Advertisement

Annals of Global Analysis and Geometry

, Volume 39, Issue 2, pp 131–163 | Cite as

The Riemannian L 2 topology on the manifold of Riemannian metrics

  • Brian ClarkeEmail author
Original Paper

Abstract

We study the manifold of all Riemannian metrics over a closed, finite-dimensional manifold. In particular, we investigate the topology on the manifold of metrics induced by the distance function of the L 2 Riemannian metric—so-called because it induces an L 2 topology on each tangent space. It turns out that this topology on the tangent spaces gives rise to an L 1-type topology on the manifold of metrics itself. We study this new topology and its completion, which agrees homeomorphically with the completion of the L 2 metric. We also give a user-friendly criterion for convergence (with respect to the L 2 metric) in the manifold of metrics.

Keywords

Manifold of Riemannian metrics Superspace Manifold of Riemannian structures L2 metric 

Mathematics Subject Classification (2000)

Primary: 58D17 Secondary: 58B20 51F99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogachev V.I.: Measure Theory, vols. I & II. Springer, Berlin (2007)Google Scholar
  2. 2.
    Bourguignon J.-P.: Une stratification de l’espace des structures riemanniennes. Compos. Math. 30(1), 1–41 (1975)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Clarke, B.: The completion of the manifold of Riemannian metrics with respect to its L 2 metric. Ph.D. Thesis, University of Leipzig, 2009, http://arxiv.org/abs/0904.0159v1
  4. 4.
    Clarke, B.: The completion of the manifold of Riemannian metrics, preprint, http://arxiv.org/abs/0904.0177v1
  5. 5.
    Clarke, B.: The metric geometry of the manifold of Riemannian metrics. Calc. Var. Partial Differential Equations, pp.1–13. Springer, Berlin/Heidelberg (2010)Google Scholar
  6. 6.
    Ebin, D.G.: The manifold of Riemannian metrics. In: Chern, S.-S., Smale, S. (eds.) Global Analysis. Proceedings of Symposia in Pure Mathematics, vol. 15, pp. 11–40. American Mathematical Society, Providence, RI (1970)Google Scholar
  7. 7.
    Freed D.S., Groisser D.: The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Michigan Math. J. 36, 323–344 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gil-Medrano, O., Michor, P.W.: The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxford Ser. (2) 42(166), 183–202 (1991), http://arxiv.org/abs/arXiv:math/9201259
  9. 9.
    Gromov M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston (2007)zbMATHGoogle Scholar
  10. 10.
    Michor, P.W., Mumford, D.: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Doc. Math. 10, 217–245 (2005), http://arxiv.org/abs/arXiv:math/0409303 Google Scholar
  11. 11.
    Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8(1), 1–48 (2006), http://arxiv.org/abs/math.DG/0312384 Google Scholar
  12. 12.
    Rana I.K.: An Introduction to Measure and Integration, 2nd ed. Graduate Studies in Mathematics, vol. 45. American Mathematical Society, Providence, RI (2002)Google Scholar
  13. 13.
    Tromba A.J.: Teichmüller Theory in Riemannian Geometry. Birkhäuser, Basel (1992)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA

Personalised recommendations