Annals of Global Analysis and Geometry

, Volume 37, Issue 3, pp 307–320 | Cite as

On the geometry of the space of smooth fibrations

  • Vincent Humilière
  • Nicolas RoyEmail author
Original Paper


We study geometrical aspects of the space of smooth fibrations between two given manifolds M and B, from the point of view of Fréchet geometry. As a first result, we show that any connected component of this space is the base space of a Fréchet-smooth principal bundle with the identity component of the group of diffeomorphisms of M as total space. Second, we prove that the space of fibrations is also itself the total space of a smooth Fréchet principal bundle with structure group the group of diffeomorphisms of the base B.


Manifolds of mappings Fibrations Submersions Fréchet manifolds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehresmann, C.: Les connexions infinitésimales dans un espace fibré différentiable. In: Séminaire Bourbaki, Vol. 1, Exp. No. 24, pp. 153–168. Soc. Math. France, Paris (1995)Google Scholar
  2. 2.
    Hamilton R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Humilière, V., Roy, N.: Lagrangian fibrations and space of completely integrable systems (in preparation)Google Scholar
  4. 4.
    Michor P.W.: Manifolds of differentiable mappings, vol. 3. Shiva Mathematics Series. Shiva Publishing Ltd., Nantwich (1980)Google Scholar
  5. 5.
    Michor P.W.: Manifolds of smooth maps. III. The principal bundle of embeddings of a noncompact smooth manifold. Cahiers Topol. Géom. Diff. 21(3), 325–337 (1980)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Michor, P.W.: Applications of Hamilton’s inverse function theorem to manifolds of mappings. In: Proceedings of the convergence structures and applications, II (Schwerin, 1983), vol. 84. Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., pp. 159–162. Akademie-Verlag, Berlin (1984)Google Scholar
  7. 7.
    Michor, P.W.: Gauge theory for diffeomorphism groups. In: Differential geometrical methods in theoretical physics (Como, 1987), vol. 250. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 345–371. Kluwer, Dordrecht (1988)Google Scholar
  8. 8.
    Michor, P.W.: Gauge theory for fiber bundles, vol. 19. Monographs and Textbooks in Physical Science. Lecture Notes. Bibliopolis, Naples (1991)Google Scholar
  9. 9.
    Roy, N.: Weinstein tubular neighbourhood for Lagrangian submersions. Preprint. ArXiv:0905.0594

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Ludwig-Maximilian UniversitätMunichGermany
  2. 2.Humbolt Universität zu BerlinBerlinGermany

Personalised recommendations