Advertisement

Annals of Global Analysis and Geometry

, Volume 37, Issue 3, pp 241–262 | Cite as

Extrinsic curvature of semiconvex subspaces in Alexandrov geometry

  • Stephanie B. Alexander
  • Richard L. BishopEmail author
Original Paper

Abstract

In Alexandrov spaces of curvature bounded either above (CBA) or below (CBB), we obtain extrinsic curvature bounds on subspaces associated with semiconcave functions. These subspaces play the role in singular geometry of submanifolds in Riemannian geometry, and arise naturally in many different places. For CBA spaces, we obtain new intrinsic curvature bounds on subspaces. For CBB spaces whose boundary is extrinsically curved, we strengthen Perelman’s concavity theorem for distance from the boundary, deriving corollaries on sharp diameter bounds, contractibility, and rigidity.

Keywords

Alexandrov spaces CAT(K) spaces Semi-concave functions Subspaces Extrinsic curvature 

Mathematics Subject Classification (2000)

53C20 53C70 53B25 58C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander S., Bishop R.: Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above. Differ. Geom. Appl. 6, 67–86 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alexander S., Bishop R.: \({\mathcal{F}K}\) -convex functions on metric spaces. Manuscr. Math. 110, 115–133 (2003) (MR 2004a:53100)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alexander S., Bishop R.: Curvature bounds for warped products of metric spaces. Geom. Funct. Anal. 14, 1143–1181 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Alexander S., Bishop R.: Gauss Equation and Injectivity Radii for Subspaces in Spaces of Curvature Bounded Above. Geom. Dedicata 117, 65–84 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alexandrov A.D.: Ruled surfaces in metric spaces. Vestnik Leningrad Univ. 12, 5–26 (1957) (Russian)Google Scholar
  6. 6.
    Ballmann, W.: Lectures on Spaces of Nonpositive Curvature, p. 25. Birkhauser, DMV Seminar Bd., Basel, Boston (1995)Google Scholar
  7. 7.
    Berestovskii, V.N., Nikolaev, I.G.: Multidimensional Generalized Riemannian Spaces, Geometry IV. Non-regular Riemannian Geometry. Encyclopaedia of Mathematical Sciences, pp. 165–244. Springer, Berlin (1993)Google Scholar
  8. 8.
    Bridson M., Haefliger A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)zbMATHGoogle Scholar
  9. 9.
    Burago, D., Burago, Yu., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, Vol. 33. American Mathematical Society, Providence, Rhode Island (2001)Google Scholar
  10. 10.
    Cao, J., Dai, B., Mei, J.: An extension of Perelman’s soul theorem for singular spaces. arXiv:0706.0565v1 (5 June 2007), v2 (19 June 2007), v3 (19 December 2007)Google Scholar
  11. 11.
    Cao, J., Dai, B., Mei, J.: An optimal extension of Perelman’s comparison theorem for quadrangles and its applications. arXiv:0712.3221v1 (19 December 2007)Google Scholar
  12. 12.
    Dekster B.: Estimates of the length of a curve. Differ. Geom. 12, 101–118 (1977)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Kapovitch, V., Petrunin, A., Tuschmann, W.: Nilpotency, almost nonnegative curvature and the gradient flow. Ann. Math. (to appear)Google Scholar
  14. 14.
    Lytchak A.: Geometry of sets of positive reach. Manuscr. Math. 115, 199–205 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lytchak A.: Almost convex subsets. Geom. Dedicata 115, 201–218 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lytchak A.: Open map theorem for metric spaces. Algeb. Anal. 17, 139–159 (2005) (Russian; translation in St. Petersburg Math. J. 17, 477–491 (2006))MathSciNetGoogle Scholar
  17. 17.
    Lytchak A.: Differentiation in metric spaces. Algeb. Anal. 16, 128–161 (2004) (Russian; translation in St. Petersburg Math. J. 16, 1017–1041 (2005))MathSciNetGoogle Scholar
  18. 18.
    Mese C.: The curvature of minimal surfaces in singular spaces. Commun. Anal. Geom. 9, 3–34 (2001)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Perelman, G.: Alexandrov’s spaces with curvature bounded from below II. Preprint (1991)Google Scholar
  20. 20.
    Perelman G., Petrunin A.: Extremal subsets in Alexandrov spaces and the generalized Liberman theorem. Algeb. Anal. 5, 242–256 (1993) (Russian; translation in St. Petersburg Math. J. 5, 215–227 (1994))MathSciNetGoogle Scholar
  21. 21.
    Perelman, G., Petrunin, A.: Quasigeodesics and Gradient Curves in Alexandrov Spaces, Preprint (1994), available from http://www.math.psu.edu/petrunin
  22. 22.
    Petrunin A.: Metric minimizing surfaces. Elec. Res. Announce. Am. Math. Soc 5, 47–54 (1998)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Petrunin, A.: Semiconcave functions in Alexandrov’s geometry. Surveys in Differential Geometry, Vol. 11, pp. 137–201. International Press, Somerville, MA (2007)Google Scholar
  24. 24.
    Plaut C.: Metric spaces of curvature ≥ k. In: Daverman, R., Sher, R. (eds) Handbook of Geometric Topology, pp. 819–898. Elsevier, Amsterdam (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations