Annals of Global Analysis and Geometry

, Volume 37, Issue 2, pp 163–171 | Cite as

Generic metrics and the mass endomorphism on spin three-manifolds

  • Andreas HermannEmail author


Let (M, g) be a closed Riemannian spin manifold. The constant term in the expansion of the Green function for the Dirac operator at a fixed point \({p\in M}\) is called the mass endomorphism in p associated to the metric g due to an analogy to the mass in the Yamabe problem. We show that the mass endomorphism of a generic metric on a three-dimensional spin manifold is nonzero. This implies a strict inequality which can be used to avoid bubbling-off phenomena in conformal spin geometry.


Conformal differential geometry Spin geometry 

Mathematics Subject Classification (2000)

53A30 53C27 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammann B.: A variational problem in conformal spin geometry Habilitationsschrift. Universität Hamburg, Hamburg (2003)Google Scholar
  2. 2.
    Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions. Comm. Anal. Geom (to appear)Google Scholar
  3. 3.
    Ammann B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Differ. Geom. Appl. 18(1), 21–32 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ammann, B.: Preprint (in preparation)Google Scholar
  5. 5.
    Ammann B., Humbert E., Morel B.: Mass endomorphism and spinorial Yamabe type problems on conformally flat manifolds. Comm. Anal. Geom. 14(1), 163–182 (2006)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Aubin T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Bär C.: Lower eigenvalue estimates for Dirac operators. Math. Ann. 293(1), 39–46 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bär C.: On nodal sets for Dirac and Laplace operators. Comm. Math. Phys. 188(3), 709–721 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bär C.: Extrinsic bounds for eigenvalues of the Dirac operator. Ann. Global Anal. Geom. 16(6), 573–596 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bourguignon J.-P., Gauduchon P.: Spineurs, opérateurs de Dirac et variations de métriques. Comm. Math. Phys. 144(3), 581–599 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Friedrich T.: On the spinor representation of surfaces in Euclidean 3-space. J. Geom. Phys. 28(1–2), 143–157 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Friedrich T.: Dirac Operators in Riemannian Geometry. American Mathematical Society, Providence (2000)zbMATHGoogle Scholar
  13. 13.
    Hijazi O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Comm. Math. Phys. 104(1), 151–162 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hitchin N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kusner, R., Schmitt, N.: The spinor representation of surfaces in space. (1996)
  16. 16.
    Lawson H.B., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  17. 17.
    Lee J.M., Parker T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lott J.: Eigenvalue bounds for the Dirac operator. Pac. J. Math. 125(1), 117–126 (1986)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Maier S.: Generic metrics and connections on Spin- and Spinc-manifolds. Comm. Math. Phys. 188(2), 407–437 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schoen R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.NWF I - MathematikUniversität RegensburgRegensburgGermany

Personalised recommendations