Annals of Global Analysis and Geometry

, Volume 37, Issue 2, pp 143–162 | Cite as

The Gauss map of minimal surfaces in Berger spheres

  • Jorge H. S. de LiraEmail author
  • Jorge A. Hinojosa
Original Paper


It is proved that a pair of spinors satisfying a Dirac type equation represents surfaces immersed in Berger spheres with prescribed mean curvature. Using this, we prove that the Gauss map of a minimal surface immersed in a Berger sphere is harmonic. Conversely, we exhibit a representation of minimal surfaces in Berger spheres in terms of a given harmonic map. The examples we constructed appear in associated families.


Berger spheres Minimal surfaces Harmonic maps 

Mathematics Subject Classification (2000)

53C42 53C43 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abresch U., Rosenberg H.: A Hopf differential for constant mean curvature in \({\mathbb{S}^2 \times \mathbb{R}}\) and \({\mathbb{H}^2 \times \mathbb{R}}\) . Acta Math. 193(2), 141–174 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abresch U., Rosenberg H.: Generalized Hopf differentials. Math. Contemp. 28, 1–28 (2005)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Barros M., Ferrández A., Lucas P.: Lawson-type problems in non-standard 3-spheres. Q. J. Math. 50, 385–388 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berdinsky D.A., Taimanov I.A.: Surfaces in three-dimensional Lie groups. Sib. Math. J. 46(6), 1005–1019 (2005)CrossRefGoogle Scholar
  5. 5.
    Besse, A.: Einstein manifolds, Springer-Verlag, New York (2008)Google Scholar
  6. 6.
    Bobenko A.: All constant mean curvature tori in \({\mathbb{R}^3,\, \mathbb{S}^3,\, \mathbb{H}^3}\) in terms of theta-functions. Math. Ann. 290, 209–245 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Calabi E.: Minimal immersions of surfaces in Euclidean spheres. J. Differ. Geom. 1, 111–125 (1967)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Carberry E.: Minimal tori in \({\mathbb{S}^3}\) . Pacific J. Math. 233(1), 41–70 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Daniel, B.: The Gauss map of minimal sufaces in the Heisenberg group. arXiv:math.DG/0606299v1.Google Scholar
  10. 10.
    Daniel, B., Hauswirth, L.: Half-space theorem, embedded minimal annuli and minimal graphs in the Heisenberg group (preprint). arXiv:math.DG/0707.0831.Google Scholar
  11. 11.
    Dorfmeister J., Pedit F., Wu H.: Weiertrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6(4), 633–668 (1998)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Fernández I., Mira P.: A characterization of constant mean curvature surfaces in homogeneous 3-manifolds. Differ. Geom. Appl. 25(3), 281–289 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Fernández I., Mira P.: Harmonic maps and constant mean curvature surfaces in \({\mathbb{H}^{2} \times \mathbb{R}}\) . Am. J. Math. 129, 1144–1181 (2007)CrossRefGoogle Scholar
  14. 14.
    de Lira, J.H, Hinojosa, J.: Bifurcating minimal surfaces in Berger spheres (in preparation)Google Scholar
  15. 15.
    Hauswirth L.: Minimal surfaces of Riemann type in three dimensional product manifolds. Pacific J. Math. 224(1), 91–117 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hauswirth L., Sá Earp R., Toubiana E.: Associate and conjugate minimal immersions in \({M \times \mathbb{R}}\) . Tohoku Math. J. 60(2), 267–280 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hitchin N.: Harmonic maps from a 2-tori to the 3-sphere. J. Differ. Geom. 31, 627–710 (1990)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Karcher H., Pinkall U., Sterling I.: New minimal surfaces in \({\mathbb{S}^3}\) . J. Differ. Geom. 28(2), 169–185 (1988)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Kenmotsu K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245, 89–99 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kilian, M., Schmidt, M.U.: On the moduli of constant mean curvature cylinders of finite type in the 3-sphere. preprint: arXiv:math.DG/0712.0108v2.Google Scholar
  21. 21.
    Lawson H.B. Jr: Complete minimal surfaces in \({\mathbb{S}^3}\) . Ann. Math. 92, 355–374 (1970)Google Scholar
  22. 22.
    Lima, L.L.: Estabilidade de correntes retificáveis e aplicações harmônicas em esferas de Berger, PhD Thesis, IMPA (1992)Google Scholar
  23. 23.
    Morgan ,J.: The Seiberg-Witten equations and applications to the topology of smooth four-manifolds. Mathematical Notes, 44. Princeton University Press, Princeton, NJ (1996)Google Scholar
  24. 24.
    Petersen P.: Riemannian Geometry (2nd edn), Graduate texts in Mathematics. Springer, New York (2006)Google Scholar
  25. 25.
    Pinkall U., Sterling I.: On the classification of constant mean curvature tori. Ann. Math. 130, 407–451 (1989)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Sharpe R.W.: Differential geometry: Cartan’s generalization of Klein’s Erlangen Program. Springer, Berlin (1997)zbMATHGoogle Scholar
  27. 27.
    Taimanov I.A.: Dirac operators and conformal invariants of tori in three-dimensional space. Proc. Steklov Inst. Math. 244(1), 233–263 (2004)MathSciNetGoogle Scholar
  28. 28.
    Taimanov I.A.: Two-dimensional Dirac operator and surface theory. Russ. Math. Survey. 61(1), 79–159 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Universidade Federal Rural de Pernambuco, R. Dom Manuel de MedeirosRecifeBrazil

Personalised recommendations