Annals of Global Analysis and Geometry

, Volume 37, Issue 2, pp 113–124 | Cite as

Complete submanifolds in manifolds of partially non-negative curvature

  • Qiaoling WangEmail author
Original Paper


We prove that a complete non-compact submanifold in a complete manifold of partially non-negative sectional curvature has only one end if the Sobolev inequality holds on it and if its total curvature is not very big by showing a Liouville theorem for harmonic maps and by using a existence theorem of constant harmonic functions with finite energy. We also generalize a result by Cao–Shen–Zhu saying that a complete orientable stable minimal hypersurface in a Euclidean space has only one end to submanifolds in manifolds of partially non-negative sectional curvature. Some related results about the structure of the same kind of submanifolds are also obtained.


Liouville theorems Harmonic maps Submanifolds Total curvature 

Mathematics Subject Classification (2000)

53C20 53C42 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, S.: Sur un théorème de géométrie et ses application aux équations aux dérivées partielles du type elliptique. Commun. Soc. Math. Kharkov 15(2), 38–45 (1915–1917)Google Scholar
  2. 2.
    Cao H.D., Shen Y., Zhu S.: The structure of stable minimal hypersurfaces in R n+1. Math. Res. Lett. 4, 637–644 (1997)zbMATHMathSciNetGoogle Scholar
  3. 3.
    do Carmo M., Peng C.K.: Stable complete minimal surfaces in R 3 are planes. Bull. Am. Math. Soc. (N.S.) 1, 903–906 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Eells J., Sampson J.H.: Harmonic mappings of Riemannian manifold. Am. J. Math. 86, 109–160 (1980)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fischer-Colbrie D.: On complete minimal surfaces with finite Morse index in three manifolds. Invent. Math. 82, 121–132 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fischer-Colbrie D., Schoen R.: The structure of complete stable minimal surfaces in 3-manifolds of non-negative scalar curvature. Commun. Pure Appl. Math. 33, 199–211 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Li, P.: Curvature and function theory on Riemannian manifolds. In: Yau, S. T. (ed.) Survey in Differential Geometry in Honor of Atiyah, Bott, Hirzebruch and Singer, vol. VII, pp. 71–111. International Press, Somerville MA (2000)Google Scholar
  8. 8.
    Li P., Tam L.F.: Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35, 359–383 (1992)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Li P., Wang J.P.: Minimal hypersurfaces with finite index. Math. Res. Lett. 9, 95–103 (2002)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Li P., Wang J.: Stable minimal hypersurfaces in a non-negatively curved manifold. J. Reine Angew. Math. 566, 215–230 (2004)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Michael J., Simon L.M.: Sobolev and mean-value inequalities on generalized submanifolds of R n. Commun. Pure Appl. Math. 26, 361–379 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schoen R., Yau S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds of non-negative Ricci curvature. Comment. Math. Helv. 39, 333–341 (1976)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Yau S.T.: Some function theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yau, S.T.: Survey on partial differential equations in differential geometry. In: Yau, S.T. (ed.) Seminar on Differential Geometry, Annals of Mathematical Studies, vol. 102, pp. 3–71. Princeton University Press, Princeton (1982)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations