Skip to main content
Log in

Eigenvalue estimates for Dirac operators in geometries with torsion

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

On a Riemannian spin manifold (M n, g), equipped with a non-integrable geometric structure and characteristic connection ▽c with parallel torsion ▽c T c = 0, we can introduce the Dirac operator D 1/3, which is constructed by lifting the affine metric connection with torsion 1/3 T c to the spin structure. D 1/3 is a symmetric elliptic differential operator, acting on sections of the spinor bundle and can be identified in special cases with Kostant’s cubic Dirac operator or the Dolbeault operator. For compact (M n, g), we investigate the first eigenvalue of the operator \({\left(D^{1/3} \right)^{2}}\) . As a main tool, we use Weitzenböck formulas, which express the square of the perturbed operator D 1/3 + S by the Laplacian of a suitable spinor connection. Here, S runs through a certain class of perturbations. We apply our method to spaces of dimension 6 and 7, in particular, to nearly Kähler and nearly parallel G 2-spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agricola I.: Connections on naturally reductive spaces, their Dirac operators and homogeneous models in string theory. Commun. Math. Phys. 232, 535–563 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Agricola, I.: The Srni lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 42, 5–84 (2006). With an appendix by Mario Kassuba

    Google Scholar 

  3. Agricola I., Friedrich T.: On the holonomy of connections with skew-symmetric torsion. Math. Ann. 328, 711–748 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agricola, I., Friedrich, T.: 3-Sasakian manifolds in dimension 7, their spinors and G 2-structures. math.DG/0812.1651

  5. Agricola I., Friedrich T., Kassuba M.: Eigenvalue estimates for Dirac operators with parallel characteristic torsion. Differ. Geom. Appl. 26, 613–624 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Alexandrov B., Friedrich T., Schoeman N.: Almost Hermitian 6-manifolds revisited. J. Geom. Phys. 53, 1–30 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Anderson M.T., Kronheimer P.B., LeBrun C.: Complete Ricci-flat Kähler manifolds of infinite topological type. Commun. Math. Phys. 125, 637–642 (2005)

    Article  MathSciNet  Google Scholar 

  8. Baum H., Friedrich T., Grunewald R., Kath I.: Twistors and Killing Spinors on Riemannian Manifolds. Teubner-Verlag, Leipzig/Stuttgart (1991)

    MATH  Google Scholar 

  9. Bismut J.-M.: A local index theorem for non Kähler manifolds. Math. Ann. 284, 681–699 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Friedrich T.: G 2-manifolds with parallel characteristic torsion. J. Differ. Geom. Appl. 25, 632–648 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedrich T., Grunewald R.: On the first eigenvalue of the Dirac operator on 6-dimensional manifolds. Ann. Glob. Anal. Geom. 3(3), 265–273 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friedrich T., Ivanov S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6, 303–336 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Friedrich T., Kath I.: 7-dimensional compact Riemannian manifolds with Killing spinors. Commun. Math. Phys. 133, 543–561 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Friedrich T., Kath I., Semmelmann U., Moroianu A.: On nearly parallel G 2-structures. J. Differ. Geom. Phys. 23, 259–286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi S., Nomizu K.: Foundations of Differential Geometry II, p. 470. Wiley Classics Library, Wiley Inc., Princeton (1969)

    Google Scholar 

  16. Kostant B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100, 447–501 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kronheimer P.B.: The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29, 665–683 (1989)

    MATH  MathSciNet  Google Scholar 

  18. Sulanke, S.: Berechnung des Spektrums des Quadrates des Dirac-Operators auf der Sphäre und Untersuchungen zum ersten Eigenwert von D auf 5-dimensionalen Räumen konstanter positiver Schnittkrümmung. Doktorarbeit, Humboldt-Universität zu Berlin (1979)

  19. Schoemann N.: Almost Hermitian structures with parallel torsion. J. Geom. Phys. 57, 2187–2212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Takahashi T.: Deformations of Sasakian structures and its applications to the Brieskorn manifolds. Tôhoku Math. J. 30, 37–43 (1976)

    Article  Google Scholar 

  21. Tanno S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  22. Vaisman I.: Locally conformal Kähler manifolds with parallel Lee form. Rend. Math. Roma 12, 263–284 (1979)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Kassuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassuba, M. Eigenvalue estimates for Dirac operators in geometries with torsion. Ann Glob Anal Geom 37, 33–71 (2010). https://doi.org/10.1007/s10455-009-9172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-009-9172-x

Keywords

Mathematics Subject Classification (2000)

Navigation