Skip to main content
Log in

On the behavior of quasi-local mass at the infinity along nearly round surfaces

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this article, we study the limiting behavior of the Brown–York mass and Hawking mass along nearly round surfaces at infinity of an asymptotically flat manifold. Nearly round surfaces can be defined in an intrinsic way. Our results show that the ADM mass of an asymptotically flat three manifold can be approximated by some geometric invariants of a family of nearly round surfaces, which approach to infinity of the manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122, (2) 997–1006 (1961)

    Article  MathSciNet  Google Scholar 

  2. Bartnik R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baskaran D., Lau S.R., Petrov A.N.: Center of mass integral in canonical general relativity. Ann. Phys. 307(1), 90–131 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Braden H.W., Brown J.D., Whiting B.F., York J.W.: Charged black hole in a grand canonical ensemble. Phys. Rev. D (3) 42(10), 3376–3385 (1990)

    Article  MathSciNet  Google Scholar 

  5. Brown J.D., Lau S.R., York J.W.: Canonical quasilocal energy and small spheres. Phys. Rev. D (3) 59(6), 064028 (1999)

    Article  MathSciNet  Google Scholar 

  6. Brown, J.D., York, J.W.: Quasilocal energy in general relativity. In: Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991). Contemporary Mathematics, Vol. 132, pp. 129–142. American Mathematical Society, Providence (1992)

  7. Brown J.D., York J.W.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D (3) 47(4), 1407–1419 (1993)

    Article  MathSciNet  Google Scholar 

  8. Carroll S.M.: Spacetime and Geometry. Addison Wesley, San Francisco (2004)

    MATH  Google Scholar 

  9. Chang, S.-Y.A.: The Moser-Trudinger inequality and applications to some problems in conformal geometry. In: Hardt, R., Wolf, M. (eds.) Nonlinear Partial Differential Equations in Differential Geometry. Park City, Utah 1992. IAS/Park City Mathematics Series, Vol. 2, pp. 65f́b-125. American Mathematical Society, Providence (1996)

  10. Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. In: Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemporary Mathematics, Vol. 71, pp. 9–14. American Mathematical Society, Providence (1988)

  11. Martinez E.A.: Quasilocal energy for Kerr black hole. Phys. Rev. D 50, 4920–4929 (1994)

    Article  MathSciNet  Google Scholar 

  12. Fan X.-Q., Shi Y., Tam L.-F.: Large-Sphere and small-sphere limits of the Brown–York mass. Comm. Anal. Geom. 17(1), 37–72 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Herglotz G.: Über die Steinersche Formel für Parallelflächen. Abh. Math. Sem. Hansischen Univ. 15, 165–177 (1943)

    Article  MathSciNet  Google Scholar 

  14. Hawking S.W.: Gravitational radiation in an expanding universe. J. Math. Phys. 9, 598–604 (1968)

    Article  Google Scholar 

  15. Hawking S.W., Horowitz G.T.: The gravitational Hamiltonian, action, entropy and surface terms. Class. Quantum Gravity 13(6), 1487–1498 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Huisken G., Yau S.T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres of constant mean curvature. Invent. Math. 124, 281–311 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klingenberg W.: A Course in Differential Geometry, Translated from the German by David Hoffman. Graduate Texts in Mathematics. Springer, New York (1978)

    Google Scholar 

  18. Nirenberg L.: The Weyl and Minkowski problem in differential geometry in the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

    Article  MATH  Google Scholar 

  19. Pogorelov A.V.: Extrinsic Geometry of Convex Surfaces, Translated from the Russian by Israel Program for Scientific Translations. Translations of Mathematical Monographs. American Mathematical Society, Providence (1973)

    Google Scholar 

  20. Qing J., Tian G.: On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-maifolds. J. Am. Math. Soc. 20, 1091–1110 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sacksteder R.: The rigidity of hypersurfaces. J. Math. Mech. 11, 929–939 (1962)

    MATH  MathSciNet  Google Scholar 

  22. Shi Y.-G., Tam L.-F.: Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J. Differ. Geom. 62, 79–125 (2002)

    MATH  MathSciNet  Google Scholar 

  23. Ye, R.: Foliation by constant mean curvature spheres on asymptotically flat manifolds. In: Geometric Analysis and the Calculus of Variations, pp 369–383. International Press, Cambridge, MA (1996, Preprint:dg-ga/9709020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuguang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Wang, G. & Wu, J. On the behavior of quasi-local mass at the infinity along nearly round surfaces. Ann Glob Anal Geom 36, 419–441 (2009). https://doi.org/10.1007/s10455-009-9169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-009-9169-5

Keywords

Mathematics Subject Classification (2000)

Navigation