Skip to main content
Log in

Einstein–Weyl structures on contact metric manifolds

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper we study Einstein-Weyl structures in the framework of contact metric manifolds. First, we prove that a complete K-contact manifold admitting both the Einstein-Weyl structures W ± = (g, ±ω) is Sasakian. Next, we show that a compact contact metric manifold admitting an Einstein-Weyl structure is either K-contact or the dual field of ω is orthogonal to the Reeb vector field, provided the Reeb vector field is an eigenvector of the Ricci operator. We also prove that a contact metric manifold admitting both the Einstein-Weyl structures and satisfying \({Q\varphi = \varphi Q}\) is either K-contact or Einstein. Finally, a couple of results on contact metric manifold admitting an Einstein-Weyl structure W = (g, f η) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair D.E.: Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Math. vol. 203. Birkhäuser, Boston-Basel-Berlin (2002)

    Google Scholar 

  2. Blair D.E., Koufogiorgos T.: When is the tangent sphere bundle locally symmetric? J. Geom. 49, 55–66 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blair D.E., Sharma R.: Generalization of Myers’ theorem on a contact manifold Illinois. J. Math. 34, 385–390 (1990)

    Google Scholar 

  4. Boyer C.P., Galicki K.: Einstein manifolds and contact geometry. Proc. Amer. Math. Soc. 129, 2419–2430 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boyer C.P., Galicki K., Matzeu P.: On η -Einstein Sasakian geometry, preprint. arXiv:math. DG/0406627v4 (2005)

  6. Chow, B., Knopf, D.: The Ricci flow: An introduction. Math. Surveys Monogr. 110, Amer. Math. Soc. (2004)

  7. Gauduchon P.: La 1-forme de torsion d’une variété hermitienne compacte. Math. Ann. 267, 495–518 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ghosh A., Koufogiorgos T., Sharma R.: Conformally flat contact metric manifolds. J. Geom 70, 66–76 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Goldberg S.I.: Integrability of almost Kaehler manifolds. Proc. Amer. Math. Soc. 21, 96–100 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gouli-Andreou F., Tsolakidou N.: Conformally flat contact metric manifolds with Qξ  =  (Trl)ξ. Contributions to Algebra and Geometry 45, 103–115 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Hasegawa I., Seino M.: Some remarks on Sasakian geometry-applications of Myres’ theorem and the canonical affine connection. J. Hokkaido Univ. Educ 32(section IIA), 1–7 (1981)

    MathSciNet  Google Scholar 

  12. Higa T.: Weyl manifolds and Einstein–Weyl manifolds. Comment. Math. Univ. St. Paul. 42, 143–160 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Matzeu P.: Some examples of Einstein–Weyl structures on almost contact manifolds. Classical Quantum Gravity 17(24), 5079–5087 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Matzeu P.: Almost contact Einstein–Weyl structures. Manuscripta Math. 108(3), 275–288 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Narita F.: Einstein–Weyl structures on almost contact metric manifolds. Tsukuba J. Math. 22, 87–98 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Perrone D.: Contact metric manifolds whose characteristic vector field is a harmonic vector field. Diff. Geom. Appl. 20, 367–378 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pedersen H., Swann A.: Riemannian submersions, four manifolds and Einstein–Weyl geometry. Proc. London Math. Soc. 66(3), 381–399 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sekigawa K.: On some compact Einstein almost Kaehler manifolds. J. Math. Soc. Japan 39, 677–684 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sharma, R.: Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom. (to appear)

  20. Tanno S.: Locally symmetric K-contact Riemannian Manifolds. Proc. Japan Acad. 43, 581–583 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tanno S.: The topology of contact Riemannian manifolds. Illinois J. Math. 12, 700–717 (1968)

    MATH  MathSciNet  Google Scholar 

  22. Tod K.P.: Compact 3-dimensional Einstein–Weyl structures. J. London Math. Soc. 45(2), 341–351 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A. Einstein–Weyl structures on contact metric manifolds. Ann Glob Anal Geom 35, 431–441 (2009). https://doi.org/10.1007/s10455-008-9145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9145-5

Keywords

Mathematics Subject Classification (2000)

Navigation