Skip to main content
Log in

On the finite principal bundles

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Let G be a connected linear algebraic group defined over \({\mathbb C}\). Fix a finite dimensional faithful G-module V 0. A holomorphic principal G-bundle E G over a compact connected Kähler manifold X is called finite if for each subquotient W of the G-module V 0, the holomorphic vector bundle E G (W) over X associated to E G for W is finite. Given a holomorphic principal G-bundle E G over X, we prove that the following four statements are equivalent: (1) The principal G-bundle E G admits a flat holomorphic connection whose monodromy group is finite. (2) There is a finite étale Galois covering \({f: Y \longrightarrow X}\) such that the pullback f*E G is a holomorphically trivializable principal G-bundle over Y. (3) For any finite dimensional complex G-module W, the holomorphic vector bundle E G (W) = E × G W over X, associated to the principal G-bundle E G for the G-module W, is finite. (4) The principal G-bundle E G is finite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F.: On the Krull–Schmidt theorem with application to sheaves. Bull. Soc. Math. France. 84, 307–317 (1956)

    MATH  MathSciNet  Google Scholar 

  2. Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biswas I., Gómez T.L.: Connections and Higgs fields on a principal bundle. Ann. Global Anal. Geom. 33, 19–46 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biswas I., Subramanian S.: Flat holomorphic connections on principal bundles over a projective manifold. Trans. Amer. Math. Soc. 356, 3995–4018 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deligne, P. (notes by J.S. Milne): Hodge cycles on abelian varieties. In: Deligne P., Milne J.S., Ogus A., Shih K.-Y. (eds.) Hodge Cycles, Motives, and Shimura Varieties. Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin (1982)

  6. Demailly J.-P., Peternell T., Schneider M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3, 295–345 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Fulton, W., Harris, J.: Representation theory. A first course. In: Graduate Texts in Mathematics, vol. 129. Springer-Verlag, New York (1991)

  8. Humphreys J.E.: Linear algebraic groups. In: Graduate Texts in Mathematics, vol. 21. Springer-Verlag, New York (1987)

    Google Scholar 

  9. Kobayashi S.: Differential Geometry of Complex Vector Bundles. Publications of the Mathematical Society of Japan 15, Iwanami Shoten Publishers and Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  10. Nori M.V.: The fundamental group-scheme. Proc. Indian Acad. Sci. Math. Sci. 91, 73–122 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Raghunathan M.S.: Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, I. On the finite principal bundles. Ann Glob Anal Geom 35, 181–190 (2009). https://doi.org/10.1007/s10455-008-9129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9129-5

Keywords

Mathematics Subject Classification (2000)

Navigation