Skip to main content

Advertisement

Log in

A Trudinger type inequality for maps into a Riemannian manifold

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The tension field of a map into a Riemannian manifold is the equivalent to the Laplacian of a function. However in contrast to the latter, the tension field is given by a nonlinear differential operator. Nevertheless, it permits an extension of a well-known Trudinger inequality that involves an Orlicz space for a function with exponential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. Math. 128(2), 385–398 (1988)

    Article  Google Scholar 

  2. Aubin T.: Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathematics, Springer-Verlag, Berlin (1998)

    MATH  Google Scholar 

  3. Chang S.-Y.A.: Conformal invariants and partial differential equations. Bull. Amer. Math. Soc. (N.S.) 42, 365–393 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang S.-Y.A., Yang P.C.: The inequality of Moser and Trudinger and applications to conformal geometry. Comm. Pure Appl. Math. 56, 1135–1150 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. John F., Nirenberg L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jost J.: Riemannian Geometry and Geometric Analysis, 4th edn. Universitext Springer-Verlag, Berlin (2005)

    Google Scholar 

  7. Montaldo S., Oniciuc C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47(2), 1–22 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970)

    Article  MathSciNet  Google Scholar 

  9. Moser R.: Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps. Math. Z. 243, 263–289 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Moser R.: Energy concentration for almost harmonic maps and the Willmore functional. Math. Z. 251, 293–311 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Moser R.: Remarks on the regularity of biharmonic maps in four dimensions. Comm. Pure Appl. Math. 59, 317–329 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Moser, R.: A variational problem pertaining to biharmonic maps. Preprint (2008)

  13. Price P.: A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43, 131–166 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Trudinger N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Moser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, R. A Trudinger type inequality for maps into a Riemannian manifold. Ann Glob Anal Geom 35, 83–90 (2009). https://doi.org/10.1007/s10455-008-9123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9123-y

Keywords

Navigation