Advertisement

Annals of Global Analysis and Geometry

, Volume 35, Issue 1, pp 39–62 | Cite as

On the lowest eigenvalue of the Hodge Laplacian on compact, negatively curved domains

  • Alessandro SavoEmail author
Original Paper

Abstract

We study the first eigenvalue of the Laplacian acting on differential forms on a compact Riemannian domain, for the absolute or relative boundary conditions. We prove a series of lower bounds when the domain is starlike or p-convex and the ambient manifold has pinched negative curvature. The bounds are sharp for starlike domains. We then compute the asymptotics of the first eigenvalue of hyperbolic balls of large radius. Finally, we give lower bounds also for Euclidean domains.

Keywords

Laplacian on forms Eigenvalues Negative curvature 

Mathematics Subject Classification (2000)

58J50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, M.T.: L 2 harmonic forms on complete Riemannian manifolds. Geometry and Analysis on Manifolds (Katata-Kyoto, 1987), 1–19. Lecture Notes in Math., vol. 1339. Springer, Berlin (1988)Google Scholar
  2. 2.
    Besse, A.: Einstein Manifolds. Springer-Verlag (1987)Google Scholar
  3. 3.
    Chavel, I.: Eigenvalues in Riemannian Geometry. (Appendix by J. Dodziuk). Academic Press Inc. (1984)Google Scholar
  4. 4.
    Donnelly H. (1981) The differential form spectrum of hyperbolic space. Manuscripta Math. 33: 365–385zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Donnelly H., Xavier F. (1984) On the differential form spectrum of negatively curved Riemannian manifolds. Amer. J. Math. 106(1): 169–185zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gage M. (1980) Upper bounds for the first eigenvalue of the Laplace-Beltrami operator. Indiana U. Math. J. 29(6): 897–912zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gallot S., Meyer D. (1975) Opérateur de courbure et Laplacien des formes différentielle d’une variété riemannienne. J. Math. Pures Appl. 54: 259–284MathSciNetGoogle Scholar
  8. 8.
    Greene, R.E., Wu, H.: Function theory on manifolds which possess a pole. Lecture Notes in Mathematics, vol. 699. Springer, Berlin (1979)Google Scholar
  9. 9.
    Guerini P. (2004) Spectre du Laplacien de Hodge-de Rham: estimées sur le variétés convexes. Bull. London Math. Soc. 36(1): 88–94zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Guerini, P., Savo, A.: The Hodge Laplacian on manifolds with boundary. Séminaire de Théorie Spectrale et Géométrie, vol. 21. Année 2002–2003, 125–146. Univ. Grenoble I, Saint-Martin-d’HèresGoogle Scholar
  11. 11.
    Guerini P., Savo A. (2003) Eigenvalue and gap estimates for the Laplacian acting on p-forms. Trans. Amer. Math. Soc. 356(1): 319–344CrossRefMathSciNetGoogle Scholar
  12. 12.
    Ikeda A., Taniguchi Y. (1978) Spectra and eigenforms of the Laplacian on S n and P n(C). Osaka J. Math. 15: 515–546zbMATHMathSciNetGoogle Scholar
  13. 13.
    McKean H.P. (1970) An upper bound for the spectrum of Δ on a manifold of negative curvature. J. Diff. Geom. 4: 359–366zbMATHMathSciNetGoogle Scholar
  14. 14.
    Savo, A.: Hodge-Laplace eigenvalues of convex bodies. Trans. Am. Math. Soc. (to appear)Google Scholar
  15. 15.
    Schwarz, G.: Hodge decomposition—a method to solve boundary value problems. Lecture Notes in Mathematics, Springer-Verlag (1995)Google Scholar
  16. 16.
    Taylor, M.E.: Partial Differential Equations, Basic Theory. 1. Text in Applied Mathematics vol. 115. Springer (1996)Google Scholar
  17. 17.
    Wu H. (1987) Manifolds of partially positive curvature. Indiana U. Math. J. 36(3): 525–548zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dipartimento di Metodi e Modelli MatematiciUniversità di Roma, La SapienzaRomeItaly

Personalised recommendations