Advertisement

Annals of Global Analysis and Geometry

, Volume 35, Issue 1, pp 1–37 | Cite as

Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces

  • Robert PetitEmail author
Original Paper

Abstract

We derive Mok-Siu-Yeung type formulas for horizontal maps from compact contact locally sub-symmetric spaces into strictly pseudoconvex CR manifolds and we obtain some rigidity theorems for the horizontal pseudoharmonic maps.

Keywords

Contact locally sub-symmetric spaces Tanaka-Webster connection Pseudoharmonic maps CR maps Rumin complex Mok-Siu-Yeung type formulas Rigidity results 

Mathematics Subject Classification (2000)

32V05 32V10 53C17 53C21 53C24 53C25 53C30 53C35 53D10 58E20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekseevsky D.V., Spiro A.F.: Compact homogeneous CR manifolds. J. Geom. Anal. 12, 183–201 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barletta E.: On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold. Diff. Geom. Appl. 25, 612–631 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barletta E., Dragomir S.: Differential equations on contact Riemannian manifolds. Ann. Scuola. Norm. Sup. Pisa. 30, 63–95 (2001)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barletta E., Dragomir S.: Jacobi fields of the Tanaka-Webster connection on Sasakian manifolds. Kodai. Math. J. 29, 406–454 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barletta E., Dragomir S., Urakawa H.: Pseudoharmonic maps from a nondegenerate CR manifolds into a Riemannian manifold. Indiana. Univ. Math. J. 50, 719–746 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bieliavsky P., Falbel E., Gorodski C.: The classification of simply-connected contact sub-Riemannian symmetric spaces. Pac. Math. J. 188, 65–82 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Blair D.E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509. Springer-Verlag, New York (1976)Google Scholar
  8. 8.
    Blair D.E., Koufogiorgos T., Papantoniou B.J.: Contact metric manifolds satisfying a nullity condition. Israel. J. Math. 91, 189–214 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Boeckx E., Cho J.T.: η-parallel contact metric spaces. Diff. Geom. Appl. 22, 275–285 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Borel A.: On the curvature tensor of the Hermitian symmetric manifolds. Ann. Math. 71, 508–521 (1960)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bourguignon J.P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. Invent. Math. 63, 263–286 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Calabi E., Vesentini E.: On compact locally symmetric Kahler manifolds. Ann. Math. 71, 472–507 (1960)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Chern S.S., Moser J.: Real hypersurfaces in complex manifolds. Acta. Math. 133, 48–69 (1974)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Cho J.T.: Geometry of contact strongly pseudo-convex CR manifolds. J. Korean. Math. Soc. 43, 1019–1045 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Dragomir S.: On pseudo-Hermitian immersions between strictly pseudoconvex CR manifolds. Am. J. Math. 117, 169–202 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Etayo, F., Santamaria, R.: Connections functorially attached to almost complex product structures. arXiv:math.cv/0502319Google Scholar
  17. 17.
    Falbel E., Gorodski C.: On contact sub-Riemannian symmetric spaces. Ann. Scient. Ec. Norm. Sup. 28, 571–589 (1995)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Falbel E., Gorodski C., Rumin M.: Holonomy of sub-Riemannian manifolds. Intern. J. Math. 8(3), 317–344 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Jost J., Yau S.T.: Harmonic maps and superrigidity. Proc. Symp. Pure Math. 54, 245–280 (1993)MathSciNetGoogle Scholar
  20. 20.
    Kaup W., Zaitsev D.: On Symmetric Cauchy-Riemann Manifolds. Adv. Math. 49, 145–181 (2000)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lee J.M.: Pseudo-Einstein structures on CR manifolds. Am. J. Math. 110, 157–178 (1988)zbMATHCrossRefGoogle Scholar
  22. 22.
    Matsushima Y.: On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces. Ann. of. Math. 75, 312–330 (1962)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mok N., Siu Y.T., Yeung S.K.: Geometric superrigidity. Invent. Math. 113, 57–83 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Musso E.: Homogeneous pseudo-Hermitian Riemannian manifolds of Einstein type. Amer. J. of Math. 113, 219–241 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Petit R.: Harmonic maps and strictly pseudoconvex CR manifolds. Comm. Anal. Geom. 10, 575–610 (2002)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Petit R.: Spinc-structures and Dirac operators on contact manifolds. Diff. Geom. Appl. 22, 229–252 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Rumin M.: Formes différentielles sur les variétés de contact. J. Diff. Geom. 39, 281–330 (1994)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Sakamoto K., Takemura Y.: Curvature invariants of CR manifolds. Kodai. Math. J. 4, 251–265 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Strichartz R.S.: Sub-Riemannian geometry. J. Diff. Geom. 24, 221–263 (1986)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Tanaka, N.: A Differential Geometric Study on Strongly Pseudoconvex CR manifolds, Lecture Notes in Math., vol. 9. Kyoto University (1975)Google Scholar
  31. 31.
    Tanno S.: Variational problems on contact Riemannian manifolds. Trans. Am. Math. Soc. 314, 349–379 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tanno S.: Pseudo-conformal invariants of type (1,3) of CR manifolds. Hokkaido. Math. J. 20, 195–204 (1991)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Webster S.: Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom. 13, 25–41 (1978)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Weil A.: Introduction à l’étude des variétés Kahlériennes. Hermann, Paris (1958)Google Scholar
  35. 35.
    Yeung S.K.: On vanishing theorems and rigidity of locally symmetric manifolds. Geom. Anal. Func. Appl. 11, 175–198 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Jean Leray, UMR 6629 CNRSUniversité de NantesNantesFrance

Personalised recommendations