Skip to main content
Log in

The geometry of compact homogeneous spaces with two isotropy summands

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We give a complete list of all homogeneous spaces M = G/H where G is a simple compact Lie group, H a connected, closed subgroup, and G/H is simply connected, for which the isotropy representation of H on T p M decomposes into exactly two irreducible summands. For each homogeneous space, we determine whether it admits a G-invariant Einstein metric. When there is an intermediate subgroup HKG, we classify all the G-invariant Einstein metrics. This is an extension of the classification of isotropy irreducible spaces, given independently by Manturov (Dokl. Akad. Nauk SSSR 141, (1961), 792–795 1034–1037, Tr. Semin. Vector Tensor Anal. 13, (1966), 68–145) and J Wolf (Acta Math. 120, (1968), 59–148 152, (1984) 141–142).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger M. (1970). Quelques formules de variation pour une structure Riemannienne. Ann. Sci. Ecole Norm. Super., 4e serie 3: 285–294

  • Besse, A.: Einstein manifolds, Springer, (1987)

  • Böhm C. (2004). Homogeneous Einstein metrics and simplicial complexes. J. Differ. Geom. 67: 79–165

    MATH  Google Scholar 

  • Böhm C. and Kerr M. (2006). Low dimensional homogeneous Einstein manifolds. Trans. Am. Math. Soc. 358(4): 1455–1468

    Article  MATH  Google Scholar 

  • Böhm C., Wang M. and Ziller W. (2004). A variational approach for compact homogeneous Einstein manifolds. Geom. Funct. Anal. 14(4): 681–733

    Article  MATH  MathSciNet  Google Scholar 

  • Borel A. and Siebenthal J. (1949). Les sous-groupes fermé de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23: 200–221

    Article  MATH  MathSciNet  Google Scholar 

  • Bourguignon J.P. and Karcher H. (1978). Curvature operators: pinching estimates and geometric examples. Ann. Sci. Ecole Norm. Sup., 4e serie 11: 71–92

    Google Scholar 

  • Boyer C.P. and Galicki K. (2000). On Sasakian-Einstein geometry. Int. J. Math. 11: 873–909

    Article  MATH  MathSciNet  Google Scholar 

  • Dynkin E.B. (1957). Semisimple subalgebras of semisimple Lie algebras. Trans. Am. Math. Soc., series 2 6: 111–244

    MATH  Google Scholar 

  • Dynkin E.B. (1957). The maximal subgroups of the classical groups. Trans. Am. Math. Soc., series 2 6: 245–378

    MATH  Google Scholar 

  • Golubitsky M. (1972). Primitive actions and maximal subgroups of Lie groups. J. Differ. Geom. 7: 175–191

    MATH  MathSciNet  Google Scholar 

  • Golubitsky M. and Rothschild B. (1971). Primitive subalgebras of exceptional Lie algebras. Pac. J. Math. 39: 371–393

    MathSciNet  Google Scholar 

  • Graev M. (2006). On the number of invariant Einstein metrics in a compact homogeneous space, Newton polytopes and contractions of Lie algebras. Int. J. Geom. Methods Mod. Phys. 3(5–6): 1047–1075

    Article  MATH  MathSciNet  Google Scholar 

  • Hilbert, D.: Die Grundlagen der Physik. Nachr. Akad. Wiss. Gött. 395–407 (1915)

  • Jensen G. (1973). Einstein metrics on principal fibre bundles. J. Differ. Geom. 8: 599–614

    MATH  Google Scholar 

  • Joyce, D.: Compact manifolds with special holonomy. Oxford Mathematical Monographs, Oxford University Press (2000)

  • Kerr M. (1996). Some new homogeneous Einstein metrics on symmetric spaces. Trans. Am. Math. Soc. 348(1): 153–171

    Article  MATH  MathSciNet  Google Scholar 

  • Kerr M. (1998). New examples of homogeneous Einstein metrics. Mich. Math. J. 45(1): 115–134

    Article  MATH  MathSciNet  Google Scholar 

  • Kobayashi S. (1963). Topology of positively pinched Kähler manifolds. Tohoku Math. J. 15: 121–139

    Article  MATH  MathSciNet  Google Scholar 

  • Krämer M. (1975). Eine Klassifikation bestimmter Untergruppen Kompakter Zusammenhängender Liegruppen. Commun. Algebra 8: 691–737

    Article  Google Scholar 

  • Manturov O.V. (1961). Homogeneous, non-symmetric Riemannian spaces with an irreducible rotation group. Dokl. Akad. Nauk SSSR 141: 792–795

    MathSciNet  Google Scholar 

  • Manturov O.V. (1961). Riemannian spaces with orthogonal and symplectic motion groups and an irreducible rotation group. Dokl. Akad. Nauk SSSR 141: 1034–1037

    MathSciNet  Google Scholar 

  • Manturov O.V. (1966). Homogeneous Riemannian spaces with an irreducible rotation group. Tr. Semin. Vector Tensor Anal. 13: 68–145

    MathSciNet  Google Scholar 

  • Murakami, S.: Exceptional simple lie groups and related topics in recent differential geometry. Differ. Geom. Top. Proc., (Tianjin, 1986–87), vol. 1369. Springer (1989)

  • Onishchik, A.L.: Comments in selected papers of E. B. dynkin with commentary. Am. Math. Soc. International Press (2000)

  • Wang, M.Y.: Einstein metrics from symmetry and bundle constructions in surveys in differential geometry, VI: essays on Einstein manifolds. International Press (1999)

  • Wang M.Y. and Ziller W. (1985). On normal homogeneous Einstein manifolds. Ann. Sci. Ecole Norm. Super., 4e serie 18: 563–633

    MATH  MathSciNet  Google Scholar 

  • Wang M.Y. and Ziller W. (1986). Existence and nonexistence of homogeneous einstein metrics. Invent. Math. 84: 177–194

    Article  MATH  MathSciNet  Google Scholar 

  • Wang M.Y. and Ziller W. (1993). Symmetric spaces and strongly insotropy irreducible spaces. Math. Ann. 296: 285–326

    Article  MATH  MathSciNet  Google Scholar 

  • Wolf J.A. (1968). The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 120: 59–148

    Article  MATH  MathSciNet  Google Scholar 

  • Wolf, J.A.: Correction to The geometry and structure of isotropy irreducible homogeneous spaces. Acta Math. 152, 141–142 (1984)

    Google Scholar 

  • Wolf, J.A.: Spaces of constant curvature, 5th ed. Publish or Perish (1984).

  • Yau S.T. (1978). On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I. Commun. Pure Appl. Math. 31: 339–411

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan M. Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, W., Kerr, M.M. The geometry of compact homogeneous spaces with two isotropy summands. Ann Glob Anal Geom 34, 329–350 (2008). https://doi.org/10.1007/s10455-008-9109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9109-9

Keywords

Mathematics Subject Classification (2000)

Navigation