Skip to main content
Log in

Geometric estimates for the trace formula

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In order to study the asymptotic distribution of geometric or spectral data associated with quotients of a reductive group by a lattice, one needs a trace formula for test functions on that group with noncompact support. Arthur has proved a trace formula for compactly supported test functions on reductive groups of arbitrary rank. We show that the coarse geometric expansion in his formula converges for rapidly decreasing functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arthur, J.: A trace fomula for reductive groups I: terms associated to classes in G(Q). Duke Math. J. 45, 911–952 (1978)

    Article  MathSciNet  Google Scholar 

  2. Arthur, J.: A trace fomula for reductive groups II: Applications of a truncation operator. Comp. Math. 40, 87–121 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Arthur, J.: The trace formula in invariant form. Ann. Math. 114, 1–74 (1981)

    Article  MathSciNet  Google Scholar 

  4. Arthur, J.: A measure on the unipotent variety. Can. J. Math. 37, 1237–1274 (1985)

    MATH  MathSciNet  Google Scholar 

  5. Arthur, J.: A local trace formula. Inst. Hautes Études Sci. Publ. Math. 73, 5–96 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borel, A., Springer, T.A.: Rationality properties of linear algebraic groups II. Tohoku Math. J. 20(2), 443–487 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deitmar, A., Hoffmann, W.: Spectral estimates for towers of noncompact quotients. Can. J. Math. 51(2), 266–293 (1999)

    MATH  MathSciNet  Google Scholar 

  9. Deitmar, A., Hoffmann, W.: Asymptotics of class numbers. Invent. Math. 107, 647–675 (2004)

    MathSciNet  Google Scholar 

  10. Faddeev, L.D.: The eigenfunction expansion of Laplace’s operator on the fundamental domain of a discrete group on the Lobačevskiĭ plane. Transactions of the Moscow Mathematical Society for the year 1967, vol. 17. Amer. Math. Soc., Providence, R.I. (1969)

  11. Gel’fand, I.M., Pyatetskiĭ-Šapiro, I.I.: Avtomorfnye funktsii i teoriya predstavleniĭ, (Russian). Trudy Moskovskogo Mat. Obščestva 12, 389–412 (1963)

    Google Scholar 

  12. Gel’fand, I.M., Graev, M.I.,: Representation Theory and Automorphic Functions. B. W. Saunders Co., Philadelphia (1969)

    Google Scholar 

  13. Godement, R.: Introduction à la théorie de Langlands, Séminaire Bourbaki, vol. 10, Exp. No. 321, pp. 115–144. Soc. Math. France, Paris (1995)

  14. , : Discrete series for semisimple Lie groups II. Acta Math. 116, 1–111 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harish-Chandra: Automorphic forms on semisimple Lie groups, vol. 62. Lecture Notes in Math. Springer, New York (1968)

  16. Harish-Chandra: Harmonic analysis on reductive p-adic groups. In: Harmonic Analysis on Homogeneous spaces, Proc. Symp. Pure Math., vol. 26, pp. 167–192. Amer. Math. Soc., Providence, R.I. (1973)

  17. Hitzelberger, P.: A convexity theorem for affine buildings, preprint. http://arxiv.org/abs/math/0701094

  18. Kostant, B.: On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. École Norm. Sup. 6, 413–455 (1973)

    MATH  MathSciNet  Google Scholar 

  19. Lang, S.: \({SL(2, \mathbb{R})}\) . Addison-Wesley, Reading (1975)

  20. Langlands, R.P.: Eisenstein series. In: Proc. Symp. Pure Math, vol. 9, pp. 235–252. Amer. Math. Soc., Providence, RI (1966)

  21. Langlands, R.P.: On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math., vol. 544. Springer, New York (1976)

    Google Scholar 

  22. Labesse, J.-P., Müller, W.: Weak Weyl’s law for congruence subgroups. Asian J. Math. 8, 733–745 (2004)

    MATH  MathSciNet  Google Scholar 

  23. Levy, J.: A truncated Poisson formula for groups of rank at most two. Am. J. Math. 117, 1371–1408 (1995)

    Article  MATH  Google Scholar 

  24. Moeglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series. Cambridge University Press (1995)

  25. Müller, W.: On the spectral side of the Arthur trace formula. Geom. Funct. Anal. 12, 669–722 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Müller, W.: Weyl s law for the cuspidal spectrum of SL n . C. R. Math. Acad. Sci. Paris 338, 347–352 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Osborne, M.S., Warner, G.: The Selberg trace formula I: Γ-rank one lattices. J. Reine Angew. Math. 3324, 1–113 (1981)

    MathSciNet  Google Scholar 

  28. Springer, T.A.: Reductive groups. In: Automorphic Forms, Representations an L-functions, Proc. Symp. Pure Math., vol. 33, part 1. Amer. Math. Soc., Providence (1979)

  29. Silberger, A.: Introduction to Harmonic Analysis on Reductive p-adic Groups. Princeton Univ. Press (1979)

  30. Warner, G.: Harmonic Analysis on Semi-simple Lie Groups, vol II. Springer, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, W. Geometric estimates for the trace formula. Ann Glob Anal Geom 34, 233–261 (2008). https://doi.org/10.1007/s10455-008-9105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-008-9105-0

Keywords

Mathematics Subject Classification (2000)

Navigation