Skip to main content
Log in

The denominators of Lagrangian surfaces in complex Euclidean plane

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

A quotient of two linearly independent quaternionic holomorphic sections of a quaternionic holomorphic line bundle over a Riemann surface is a conformal branched immersion from a Riemann surface to four-dimensional Euclidean space. On the assumption that a quaternionic holomorphic line bundle is associated with a Lagrangian-branched immersion from a Riemann surface to complex Euclidean plane, we shall classify the denominators of Lagrangian-branched immersion from a Riemann surface to complex Euclidean plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burstall, F.E., Ferus, D., Leschke, K., Pedit, F., Pinkall, U.: Conformal Geometry of Surfaces in S 4 and Quaternions. Lecture Notes in Mathematics 1772, Springer-Verlag, Berlin (2002)

  • Ferus D., Leschke K., Pedit F. and Pinkall U. (2001). Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. Invent. Math. 146(3): 507–593

    Article  MathSciNet  MATH  Google Scholar 

  • Forster O. (1991). Lectures on Riemann surfaces, Graduate Texts in Mathematics 81. Springer-Verlag, New York

    Google Scholar 

  • Castro I. and Urbano F. (1993). Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. Tohoku Math. J. (2) 45(4): 565–582

    Article  MathSciNet  MATH  Google Scholar 

  • Hélein F. and Romon P. (2000). Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions. Comment. Math. Helv. 75(4): 668–680

    Article  MathSciNet  MATH  Google Scholar 

  • Hélein F. and Romon P. (2002). Hamiltonian stationary Lagrangian surfaces in \({\mathbb{C}}^2\) Comm. Anal. Geom. 10(1): 79–126

    MathSciNet  MATH  Google Scholar 

  • Oh Y.-G. (1990). Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. Invent. Math. 101(2): 501–519

    Article  MathSciNet  MATH  Google Scholar 

  • Pedit, F. and Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry. In: Proceedings of the International Congress of Mathematicians, vol. II (Berlin, 1998). Doc. Math. Extra vol. II, 389–400 (1998)

  • Peters, G.P.: Soliton spheres. Dissertation, Technischen Universität Berlin, (2004)

  • Rodin Y.L. (1987). Generalized Analytic Functions on Riemann Surfaces. Lecture Notes in Mathematics 1288. Springer-Verlag, Berlin

    Google Scholar 

  • Urakawa, H.: Calculus of Variations and Harmonic Maps. Translations of Mathematical Monographs 132, Translated from the 1990 Japanese original by the author, American Mathematical Society, Providence, RI (1993)

  • Vekua I.N. (1962). Generalized Analytic Functions. Pergamon Press, London

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiro Moriya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, K. The denominators of Lagrangian surfaces in complex Euclidean plane. Ann Glob Anal Geom 34, 1–20 (2008). https://doi.org/10.1007/s10455-007-9100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9100-x

Keywords

Mathematics Subject Classification (2000)

Navigation