Skip to main content
Log in

Projective holonomy I: principles and properties

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The aim of this paper and its sequel is to introduce and classify the holonomy algebras of the projective Tractor connection. After a brief historical background, this paper presents and analyses the projective Cartan and Tractor connections, the various structures they can preserve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of the Tractor holonomy, as do U(1) and \(Sp(1, \mathbb{H})\) bundles over a manifold of smaller dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S., Leistner, T.: Ambient connections realising conformal tractor holonomy, math. DG/0606410 (2006)

  2. Armstrong, S.: Definite signature conformal holonomy: a complete classification, math. DG/0503388 (2005)

  3. Armstrong, S.: Projective holonomy II: cones and complete classifications, math. DG/0602621 (2006)

  4. Armstrong, S.: Ricci holonomy: a classification, math. DG/0602619 (2006)

  5. Armstrong, S.: Tractor holonomy classification for projective and conformal structures. Doctoral Thesis, Bodelian Library, Oxford University (2006).

  6. Bailey T.N., Eastwood M.G., Gover R. (1994). Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24: 1191–1217

    MATH  MathSciNet  Google Scholar 

  7. Čap A., Gover A.R. (2003). Standard Tractors and the conformal ambient metric construction. Ann. Global Anal. Geom. 24(3): 231–259

    Article  MathSciNet  MATH  Google Scholar 

  8. Čap, A., Gover, A.R.: Tractor bundles for irreducible parabolic geometries. Global Analysis and Harmonic Analysis (Marseille-Luminy, 1999), Smin. Congr., Vol. 4, pp. 129–154. Soc. Math. France, Paris (2000)

  9. Čap A., Gover A.R. (2002). Tractor calculi for parabolic geometries. Trans. Am. Math. Soc. 354(4): 1511–1548

    Article  MATH  Google Scholar 

  10. Čap A., Schichl H. (2000). Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29(3): 453–505

    MathSciNet  MATH  Google Scholar 

  11. Čap A., Slovák J., Souček V. (1997). Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation. Acta Math. Univ. Comenian. (N.S.) 66(1): 33–69

    MathSciNet  MATH  Google Scholar 

  12. Čap A., Slovák J., Souček V. (1997). Invariant operators on manifolds with almost Hermitian symmetric structures. II. Normal Cartan connections. Acta Math. Univ. Comenian. (N.S.) 66(2): 203–220

    MathSciNet  MATH  Google Scholar 

  13. Čap A., Slovák J., Souček V. (2000). Invariant operators on manifolds with almost Hermitian symmetric structures III Standard operators. Differential Geom. Appl. 12(1): 51–84

    Article  MathSciNet  MATH  Google Scholar 

  14. Cartan E. (1923). Les Espaces à Connexion Conforme. Les Annales de la Société Polonaise de Mathématiques 2: 171–202

    Google Scholar 

  15. Cartan E. (1924). Sur les variétés connexion projective. Bull. Soc. Math. France 52: 205–241

    MathSciNet  MATH  Google Scholar 

  16. Fox D.J.F. (2005). Contact projective structures. Indiana Univ. Math. J. 54(6): 1547–1598

    Article  MATH  MathSciNet  Google Scholar 

  17. Gover A.R. (2001). Invariant theory and calculus for conformal geometries. Adv. Math. 163(2): 206–257

    Article  MATH  MathSciNet  Google Scholar 

  18. Hitchin, N.J.: Complex manifolds and Einstein’s equations. In: Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., Vol. 970, pp. 73–99. Springer, Berlin-New York (1982)

  19. Kobayashi S., Ochiai T. (1980). Holomorphic projective structures on compact complex surfaces. Math. Ann. 249(1): 75–94

    Article  MATH  MathSciNet  Google Scholar 

  20. Kostant B. (1961). Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. 74(2): 329–387

    Article  MathSciNet  Google Scholar 

  21. LeBrun C. (1983). Spaces of complex null geodesics in complex-Riemannian geometry. Trans. Am. Math. Soc. 278(1): 209–231

    Article  MATH  MathSciNet  Google Scholar 

  22. Leitner, F.: Normal conformal Killing forms, arXiv:math. DG/ 0406316 (2004).

  23. Merkulov S., Schwachhöfer L. (1999). Classification of irreducible holonomies of torsion-free affine connections. Ann. Math. 150: 77–150

    Article  MATH  Google Scholar 

  24. Merkulov, S., Schwachhöfer, L.: Addendum to: Classification of irreducible holonomies of torsion-free affine connections. Ann. Math. (2) 150(3), 1177–1179 (1999)

    Google Scholar 

  25. Molzon R., Mortensen K.R. (1996). The Schwarzian derivative for maps between manifolds with complex projective connections. Trans. Am. Math. Soc. 348(8): 3015–3036

    Article  MATH  MathSciNet  Google Scholar 

  26. Ochiai T. (1970). Geometry associated with semisimple flat homogeneous spaces. Trans. Am. Math. Soc. 152: 159–193

    Article  MATH  MathSciNet  Google Scholar 

  27. Sasaki S.: On the spaces with normal conformal connexions whose groups of holonomy fixes a point or a hypersphere, I. II. III. Jap. Journ. Math. 18, 615–622, 623–633, 634–795 (1943)

  28. Sasaki S., Yano K. (1947). On the structure of spaces with normal conformal connection whose holonomy group leaves invariant a sphere of arbitrary dimension. Sugaku (Mathematics) 1: 18–28

    MathSciNet  Google Scholar 

  29. Tanaka N. (1979). On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. 8: 23–84

    MATH  MathSciNet  Google Scholar 

  30. Thomas T.Y. (1926). On conformal geometry. Proc. N.A.S. 12: 352–359

    Article  MATH  Google Scholar 

  31. Thomas T.Y. (1931). Conformal tensors. Proc. N.A.S. 18: 103–189

    Article  Google Scholar 

  32. Thomas T.Y. (1935). The differential invariants of generalized spaces. Nat. Math. Mag. 9(5): 151–152

    Google Scholar 

  33. Weyl H. (1929). On the foundations of infinitesimal geometry. Bull. A. M. S. 35: 716–725

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, S. Projective holonomy I: principles and properties. Ann Glob Anal Geom 33, 47–69 (2008). https://doi.org/10.1007/s10455-007-9076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9076-6

Keywords

Navigation