Skip to main content
Log in

A note on Morse inequalities for harmonic maps with potential and their applications

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We discuss Morse inequalities for homotopic critical maps of the energy functional with a potential term. For a generic potential this gives a lower bound on the number of homotopic critical maps in terms of the Betti numbers of the moduli space of harmonic maps. Other applications include sharp existence results for maps with prescribed tension field and pseudo-harmonic maps. Our hypotheses are that the domain and target manifolds are closed and the latter has non-positive sectional curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319, xxii+643 pp. Springer-Verlag, Berlin (1999)

  2. Bialy M. and Polterovich L. (1995). Hopf-type rigidity for Newton equations. Math. Res. Lett. 2: 695–700

    MATH  MathSciNet  Google Scholar 

  3. Bialy M. and MacKay R.S. (2000). Variational properties of a nonlinear elliptic equation and rigidity. Duke Math. J. 102: 391–401

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen Q. (1999). Maximum principles, uniqueness and existence for harmonic maps with potential and Landau-Lifshitz equations. Calc. Var. Partial Differential Equations 8: 91–107

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen W. and Jost J. (2004). Maps with prescribed tension fields. Comm. Anal. Geom. 12: 93–109

    MATH  MathSciNet  Google Scholar 

  6. Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86: 109–160

    Article  MATH  MathSciNet  Google Scholar 

  7. Fardoun A., Ratto A. and Regbaoui R. (2000). On the heat flow for harmonic maps with potential. Ann. Global Anal. Geom. 18: 555–567

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb D.H. (1969). Covering transformations and universal fibrations. Illinois J. Math. 13: 432–437

    MATH  MathSciNet  Google Scholar 

  9. Hartman P. (1967). On homotopic harmonic maps. Canad. J. Math. 19: 673–687

    MATH  MathSciNet  Google Scholar 

  10. Jost J. and Yau S.-T. (1993). A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170: 221–254

    Article  MATH  MathSciNet  Google Scholar 

  11. Kappeler T., Kuksin S. and Schroeder V. (2003). Perturbations of the harmonic map equation. Commun. Contemp. Math. 5: 629–669

    Article  MATH  MathSciNet  Google Scholar 

  12. Kappeler T. and Latschev J. (2005). Counting solutions of perturbed harmonic map equations. Enseign. Math. 51(2): 47–85

    MATH  MathSciNet  Google Scholar 

  13. Kokarev, G., Kuksin, S.: Quasilinear elliptic differential equations for mappings between manifolds, I. (Russian) Algebra i Analiz, 15, 1–60 (2003) (Translation in St. Petersburg Math. Journal 15, 469–505 (2004))

  14. Kokarev G. (2003). On the compactness property of the quasilinearly perturbed harmonic map equation. Sbornik: Mathematics 194: 1055–1068

    Article  MATH  MathSciNet  Google Scholar 

  15. Kokarev, G.: Elements of Qualitative Theory of Quasilinear Elliptic Partial Differential Equations for Mappings Valued in Manifolds. PhD Thesis, Heriot-Watt University (2003)

  16. Kokarev G. and Kuksin S. (2007). Quasi-linear elliptic differential equations for mappings of manifolds, II. Ann. Global Anal. Geom. 31: 59–113

    Article  MATH  MathSciNet  Google Scholar 

  17. Kokarev, G.: On pseudo-harmonic maps in conformal geometry. (Preprint) (2007)

  18. Palais R.S. and Smale S. (1964). A generalized Morse theory. Bull. Amer. Math. Soc. 70: 165–172

    Article  MATH  MathSciNet  Google Scholar 

  19. Peng X. and Wang G. (1998). Harmonic maps with a prescribed potential. C. R. Acad. Sci. Paris Sr. I Math. 327: 271–276

    MATH  MathSciNet  Google Scholar 

  20. Schoen, R., Yau, S.-T.: Compact group actions and the topology of manifolds with non-positive sectional curvature. Topology 18, 361–380 (1979) (Errata in 21, 483 (1982))

    Google Scholar 

  21. Sunada T. (1979). Rigidity of certain harmonic mappings. Invent. Math. 51: 297–307

    Article  MATH  MathSciNet  Google Scholar 

  22. Uhlenbeck K. (1981). Morse theory by perturbation methods with applications to harmonic maps. Trans. Amer. Math. Soc. 267: 569–583

    Article  MATH  MathSciNet  Google Scholar 

  23. Weber J. (2002). Perturbed closed geodesics are periodic orbits: index and transversality. Math. Z. 241: 45–82

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerasim Kokarev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokarev, G. A note on Morse inequalities for harmonic maps with potential and their applications. Ann Glob Anal Geom 33, 101–113 (2008). https://doi.org/10.1007/s10455-007-9073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9073-9

Keywords

Mathematics Subject Classifications (2000)

Navigation