Skip to main content
Log in

An extension of Barta’s Theorem and geometric applications

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We prove an extension of a theorem of Barta and we give some geometric applications. We extend Cheng’s lower eigenvalue estimates of normal geodesic balls. We generalize Cheng-Li-Yau eigenvalue estimates of minimal submanifolds of the space forms. We show that the spectrum of the Nadirashvili bounded minimal surfaces in \(\mathbb{R}^{3}\) have positive lower bounds. We prove a stability theorem for minimal hypersurfaces of the Euclidean space, giving a converse statement of a result of Schoen. Finally we prove generalization of a result of Kazdan–Kramer about existence of solutions of certain quasi-linear elliptic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barta J. (1937) Sur la vibration fundamentale d’une membrane. C. R. Acad. Sci. 204, 472–473

    Google Scholar 

  2. Berger M., Gauduchon P., Mazet E. (1974) Le Spectre d’une Variété Riemannienes. Lect. Notes Math. 194, Springer-Verlag

    Google Scholar 

  3. Bessa G.P., Montenegro J.F. (2003) Eigenvalue estimates for submanifolds with locally bounded mean curvature. Ann. Global Anal. and Geom. 24, 279–290

    Article  MATH  MathSciNet  Google Scholar 

  4. Bishop R., Crittenden R. (1964) Geometry of Manifolds. Academic Press, New York

    MATH  Google Scholar 

  5. Chavel I. (1984) Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics, Academic Press, INC

    Google Scholar 

  6. Cheng S.Y. (1975) Eigenfunctions and eigenvalues of the Laplacian. Am. Math. Soc Proc. Symp. Pure Math. 27, part II, 185–193

  7. Cheung L.-F., Leung P.-F. (2001) Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space. Math. Z. 236, 525–530

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng S.Y., Li P., Yau S.T. (1984) Heat equations on minimal submanifolds and their applications. Amer. J. Math. 106, 1033–1065

    Article  MATH  MathSciNet  Google Scholar 

  9. Fischer-Colbrie D., Schoen R. (1980) The structure of complete stable minimal surfaces in 3-manifolds of non negative scalar curvature. Comm. Pure and Appl. Math. 33, 199–211

    Article  MATH  MathSciNet  Google Scholar 

  10. Grigoryan A. (1999) Analytic and geometric background of recurrence and non-explosion of the brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36(2):135–249

    Article  MATH  MathSciNet  Google Scholar 

  11. Kasue A. (1984) On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. éc. Norm. Sup. 17, 31–44

    MATH  MathSciNet  Google Scholar 

  12. Kazdan J., Kramer R. (1978) Invariant Criteria for existence of solutions to second-order quasilinear elliptic equations. Comm. Pure. Appl. Math. 31(5):619–645

    Article  MATH  MathSciNet  Google Scholar 

  13. Kazdan J., Warner F.W. (1975) Remarks on some quasilinear elliptic equations. Comm. Pure Appl. Math. 28, 567–597

    Article  MATH  MathSciNet  Google Scholar 

  14. Jorge L., Koutrofiotis D. (1980) An estimate for the curvature of bounded submanifolds. Amer. J. Math. 103(4):711–725

    Article  Google Scholar 

  15. McKean H.P. (1970) An upper bound for the spectrum of \({\triangle}\) on a manifold of negative curvature. J. Differ. Geom. 4, 359–366

    MATH  MathSciNet  Google Scholar 

  16. Matilla P. Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press (1995).

  17. Nadirashvili N. (1996) Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Invent. Math. 126, 457–465

    Article  MATH  MathSciNet  Google Scholar 

  18. Schoen R.: Stable minimal surfaces in three manifolds. Seminar on Minimal Submanifolds. Annals of Math Studies. Princeton University Press.

  19. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. Conference Proceedings and Lecture Notes in Geometry and Topology, vol. 1, 1994.

  20. Yau S.T. (2000) Review of Geometry and Analysis Asian, J Math 4(1): 235–278

    MATH  MathSciNet  Google Scholar 

  21. Whitney H. (1957) Geometric Integration Theory. Princeton Mathematical Series, Princeton University Press

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Pacelli Bessa.

Additional information

Bessa and Montenegro were partially supported by CNPq Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacelli Bessa, G., Fábio Montenegro, J. An extension of Barta’s Theorem and geometric applications. Ann Glob Anal Geom 31, 345–362 (2007). https://doi.org/10.1007/s10455-007-9058-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-007-9058-8

Keywords

Mathematics Subject Classification (2000)

Navigation