Skip to main content
Log in

Manifolds with small Dirac eigenvalues are nilmanifolds

  • Original Paper
  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and bounded diameter, and almost non-negative scalar curvature. Let r = 1 if n = 2,3 and r = 2[n/2]-1 + 1 if n ≥ 4. We show that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exists a uniform lower bound on the r-th eigenvalue of the square of the Dirac operator. If a manifold with almost non-negative scalar curvature has one small Dirac eigenvalue, and if the volume is not too small, then we show that the metric is close to a Ricci-flat metric on M with a parallel spinor. In dimension 4 this implies that M is either a torus or a K3-surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch, U.: Über das Glätten Riemannscher Metriken, Habilitationsschrift, Rheinische Wilhelms-Universität, Bonn (1988)

  2. Ammann B. (2004) Dirac eigenvalue estimates on 2-tori. J. Geom. Phys. 51, 372–386

    Article  MATH  MathSciNet  Google Scholar 

  3. Ammann, B., Dahl, M., Humbert, E.: Surgery and harmonic spinors, Preprint (2006)

  4. Ammann, B., Sprouse, C.: Details to Examples in “Manifolds with small Dirac eigenvalues are nilmanifolds”, downloadable on http://www.berndammann.de/publications/smallev1.

  5. Anderson M. (1990) Convergence and rigidity of manifolds under Ricci curvature bounds. Invent. Math. 102, 429–445

    Article  MATH  MathSciNet  Google Scholar 

  6. Aubry E., Colbois B., Ghanaat P., Ruh E. (2003) Curvature, Harnack’s inequality, and a spectral characterization of nilmanifolds. Ann. Golb. Anal. Geom. 23, 227–246

    Article  MATH  MathSciNet  Google Scholar 

  7. Bär C. (1992) Lower eigenvalue etimates for Dirac operators. Math. Ann. 293, 39–46

    Article  MATH  MathSciNet  Google Scholar 

  8. Bär C. (1993) Real Killing Spinors and Holonomy. Comm. Math. Phys. 154, 509–521

    Article  MATH  MathSciNet  Google Scholar 

  9. Bär C. (1996) Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942

    Article  MATH  MathSciNet  Google Scholar 

  10. Bär C., Dahl M. (2002) Surgery and the spectrum of the Dirac operator. J. reine angew. Math. 552, 53–76

    MATH  MathSciNet  Google Scholar 

  11. Bär C., Dahl M. (2004) The first Dirac eigenvalue on manifolds with positive scalar curvature. Proc. Amer. Math. Soc. 132:3337–3344

    Article  MATH  MathSciNet  Google Scholar 

  12. Ballmann W., Brüning J., Carron G. (2003) Eigenvalues and holonomy. Int. Math. Res. Notices 12, 657–665

    Article  Google Scholar 

  13. Bando S. (1987) Real analyticity of solutions of Hamilton’s equation. Math. Z. 195, 93–97

    Article  MATH  MathSciNet  Google Scholar 

  14. Bemelmans J., Min-Oo M., Ruh E. (1984) Smoothing Riemannian metrics. Math Z. 188, 69–74

    Article  MATH  MathSciNet  Google Scholar 

  15. Cheeger, J., Gromov, M.: On the characteristic numbers of complete manifolds of bounded curvature and finite volume. Differential geometry and complex analysis, H. E. Rauch Memorial Volume 115–154 (1985)

  16. Cheeger J., Fukaya K., Gromov M. (1992) Nilpotent Structures and invariant metrics on collapsed manifolds. J. Amer. Math. Soc. 5, 327–372

    Article  MATH  MathSciNet  Google Scholar 

  17. Chow, B., Knopf, D.: The Ricci flow: an introduction. Math. Surv. and Mono. Vol. 110, AMS (2004)

  18. Colbois B., Courtois G. (1990) A note on the first nonzero eigenvalue of the Laplacian acting on p-forms. Manuscripta Math. 68, 143–160

    Article  MATH  MathSciNet  Google Scholar 

  19. Friedrich T. (1980) Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146

    Article  MATH  MathSciNet  Google Scholar 

  20. Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, Vol. 25, AMS (2000)

  21. Fukaya K. (1990) Hausdorff convergence of Riemannian manifolds and its applications. Recent Topics in Differential and Analytic Geometry. Adv. Stud. Pure Math. 18-I, 143–238

    MathSciNet  Google Scholar 

  22. Gallot S. (1983) Inégalités isopérimétriques, courbure de Ricci et invariants gomtriques. II. C. R. Acad. Sci. Paris Sr. I Math. 296(8):365–368

    MATH  MathSciNet  Google Scholar 

  23. Gao L. (1990) Convergence of Riemannian manifolds: Ricci and \({L^\frac{n}{2}}\) curvature pinching. J. Diff. Geom. 32, 349–381

    MATH  Google Scholar 

  24. Ghanaat P. (1989) Almost Lie groups of type \({\mathbb{R}^n}\) . J. Reine Angew. Math. 401, 60–81

    MATH  MathSciNet  Google Scholar 

  25. Hijazi, O.: Spectral properties of the dirac operator and geometrical structures. In: Proceedings of the Summer School on Geometric Methods in Quantum Field Theory, Villa de Leyva, Colombia, July 12–30, (1999), World Scientific 2001.

  26. Hitchin N. (1974) Harmonic spinors. Adv. Math. 14, 1–55

    Article  MATH  MathSciNet  Google Scholar 

  27. Lawson H.-B., Michelsohn M.-L. (1989) Spin Geometry. Princeton University Press, Princeton

    MATH  Google Scholar 

  28. Lott J. (2002) Collapsing and Dirac type operators. Geom. Dedic. 91, 175–196

    Article  MATH  MathSciNet  Google Scholar 

  29. Maier S. (1997) Generic metrics and connections on spin- and spin- c-manifolds. Comm. Math. Phys. 188, 407–437

    Article  MATH  MathSciNet  Google Scholar 

  30. Mostow G.D. (1957) Equivariant embeddings in euclidean space. Ann. of Math. 65, 432–446

    Article  MathSciNet  Google Scholar 

  31. Mostow G.D. (1957) On a conjecture of Montgomery. Ann. of Math. 65, 513–516

    Article  MathSciNet  Google Scholar 

  32. Petersen, P.: Convergence theorems in Riemannian geometry, In: Grove, P (ed.) Comparison Geometry, vol. 30, pp. 167–202. MSRI Publications (1997)

  33. Petersen P., Sprouse C. (1999) Eigenvalue pinching for Riemannian vector bundles. J. Reine Angew. Math. 511, 73–86

    MATH  MathSciNet  Google Scholar 

  34. Petersen, P., Sprouse, C.: Erratum to “Eigenvalue pinching for Riemannian vector bundles”. Preprint 2003.

  35. Petersen, P., Sprouse, C.: Eigenvalue pinching on p-forms. In: Proceedings of the Fifth Pacific Rim Geometry Conference. Tohoku Mathematical Publications, Vol. 20, pp. 139–145 (2001)

  36. Pfäffle F. (2000) The Dirac spectrum of Bieberbach manifolds. J. Geom. Phys. 35, 367–385

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Ammann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammann, B., Sprouse, C. Manifolds with small Dirac eigenvalues are nilmanifolds. Ann Glob Anal Geom 31, 409–425 (2007). https://doi.org/10.1007/s10455-006-9048-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-006-9048-2

Keywords

Mathematics Subject Classifications (2000)

Navigation