Skip to main content
Log in

Generalized planar curves and quaternionic geometry

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Motivated by the analogies between the projective and the almost quaternionic geometries, we first study the generalized planar curves and mappings. We follow, recover, and extend the classical approach, see e.g., (Sov. Math. 27(1) 63–70 (1983), Rediconti del circolo matematico di Palermo, Serie II, Suppl. 54 75–81) (1998), Then we exploit the impact of the general results in the almost quaternionic geometry. In particular we show, that the natural class of ℍ-planar curves coincides with the class of all geodesics of the so called Weyl connections and preserving this class turns out to be the necessary and sufficient condition on diffeomorphisms to become morphisms of almost quaternionic geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alekseevsky, D.V., Marchiafava, S., Pontecorvo, M.: Compatible complex structures on almost quaternionic manifolds. Trans. Amer. Math. Soc. 351(3), 997–1014 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bailey, T.N., Eastwood, M.G.: Complex paraconformal manifolds — their differential geometry and twistor theory. Forum Math. 3, 61–103 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Čap, A.; Slovák, J., Parabolic geometries, monograph to appear

  4. Čap, A., Slovák, J.: Weyl structures for parabolic geometries. Math. Scand. 93, 53–90 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Čap, A., Slovák, J., Žádník, V.: On distinguished curves in parabolic geometries. Transform. Groups 9(2), 143–166 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Gover, A.R., Slovák, J.: Invariant local twistor calculus for quaternionic structures and related geometries. J. Geom. Phys. 32(1), 14–56 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hrdina, J.: H-planar curves, In: Proceedings of the international conference on differential geometry and applications. Prague, August 2004, Charles University Press (2005)

  8. J Joyce, D.D., Compact manifolds with special holonomy, Oxford Mathematical Monographs, 2000.

  9. Mikes J., Sinyukov N.S.: On quasiplanar mappings of spaces of affine connection. Sov. Math. 27(1), 63–70 (1983)

    MATH  Google Scholar 

  10. Mikeš, J., Němčíková, J., Pokorná, O.: On the theory of the four-quasiplanar mappings of almost quaternionic spaces. Rediconti del circolo matematico di palermo, Serie II, Suppl.54, 75–81 (1998)

    Google Scholar 

  11. Oproiu, V.: Integrability of almost quaternal structures. An. st. Univ. “Al. I. Cuza” Iasi30, 75–84 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Salamon, S.M.: Differential geometry of quaternionic manifolds. Ann. Scient. ENS19, 31–55 (1987)

    MathSciNet  Google Scholar 

  13. Žádnìk, V.: Generalized geodesics, PhD thesis, Masaryk university. Brno, Czech Republic (2003).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrdina, J., Slovák, J. Generalized planar curves and quaternionic geometry. Ann Glob Anal Geom 29, 343–354 (2006). https://doi.org/10.1007/s10455-006-9023-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-006-9023-y

Keywords

Navigation