Skip to main content
Log in

σk-Scalar curvature and eigenvalues of the Dirac operator

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

On a four-dimensional closed spin manifold (M 4, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows: \(\lambda^4 \geq \frac{32}{3} \frac{\int_{M^4} \sigma_2 (g) {\rm d} {\rm vol} (g)}{{\rm vol} (M^4, g)}\) Equality implies that (M 4, g) is a round sphere and the corresponding eigenspinors are Killing spinors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B.: A spin-conformal lower bound of the first positive Dirac eigenvalue. Differ. Geom. Appl. 18 21–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ammann, B., Bär, C.: Dirac eigenvalues and total scalar curvature. J. Geom. Phys. 33, 229–234 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bär, C.: Lower eigenvalue estimates for Dirac operators. Math. Ann. 293, 39–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bär, C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds. Teubner-Texte zur Mathematik, Stuttgart, Germany (1991)

  6. Chang, S.-Y. A., Gursky, M., Yang, P.: An equation of Monge–Ampére type in conformal geometry, and four-manifolds ofs positive Ricci curvature. Ann. Math. 155(2), 709–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, S.-Y. A., Gursky, M., Yang P.: An a priori estimates for a fully nonlinear equation on Four-manifolds. J. D'Anal. Math. 87, 151–186 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, S.-Y. A., Gursky, M., Yang, P.: A conformally invariant sphere theorem in four dimensions. Publ. Math. Inst. Hautes Études Sci. No. 98, 105–143 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung. Math. Nachr. 97, 117–146 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedrich, T., Kim, E. C.: Some remarks on the Hijazi inequality and generalizations of the Killing equation for spinors. J. Geom. Phys. 37, 1–14 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedrich, T., Kirchberg, K.-D.: Eigenvalue estimates of the Dirac operator depending on the Ricci tensor. Math. Ann. 324, 799–816 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedrich, T., Kirchberg, K.-D.: Eigenvalue estimates for the Dirac operator depending on the Weyl tensor. J. Geom. Phys. 41, 196–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guan, P., Lin, C.-S., Wang, G.: Schouten tensor and some topological properties. Comm. Anal. Geom. 13, 845–860 (2005)

    MathSciNet  Google Scholar 

  14. Guan, P., Wang, G.: A fully nonlinear conformal flow on locally conformally flat manifolds. J. reine und angew. Math. 557, 219–238 (2003) Preliminary version, ArXiv: math.DG/0112256v1

  15. Gursky, M., Viaclovsky, J.: A fully nonlinear equation on 4-manifolds with positive scalar curvature. J. Diff. Geom. 63, 131–154 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Comm. Math. Phys. 104, 151–162 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hijazi, O.: Première valeur propre de lòpérateur de Dirac et nombre de Yamabe. C. R. Acad. Sci. Paris Sér. I Math. 313, 865–868 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Hijazi, O.: Lower bounds for eigenvalues of the Dirac operator through modified connections. J. Geom. Phys. 16, 27–38 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hitchin, N.: Harmonic spinors. Adv. Math. 14. 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  21. Lott, J.: Eigenvalue bounds for the Dirac operator. Pac. J. Math. 125, 117–126 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Viaclovsky, J.: Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J. 101, 283–316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofang Wang.

Additional information

Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G. σk-Scalar curvature and eigenvalues of the Dirac operator. Ann Glob Anal Geom 30, 65–71 (2006). https://doi.org/10.1007/s10455-006-9022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-006-9022-z

Keywords

Navigation