Skip to main content
Log in

Submanifolds with Parallel Second Fundamental Form Studied via the Gauss Map

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

For an arbitrary n-dimensional Riemannian manifold N and an integer m ∈ {1,…,n−1} a covariant derivative \(\hat{\nabla}\) on the Grassmann bundle ^ := G m (T N) is introduced which has the property that an m-dimensional submanifold MN has parallel second fundamental form if and only if its Gauss map M^ is affine. (For N Rn this result was already obtained by J. Vilms in 1972.) By means of this relation a generalization of Cartan's theorem on the total geodesy of a geodesic umbrella can be derived: Suppose, initial data (p,W,b) prescribing a tangent space W ∈ G m (T p N) and a second fundamental form b at pN are given; for these data we construct an m-dimensional ‘umbrella’ M = M(p,W,b) ⊂ N the rays of which are helical arcs of N; moreover, we present tensorial conditions (not involving \(\hat{\nabla}\)) which guarantee that the umbrella M has parallel second fundamental form. These conditions are as well necessary, and locally every submanifold with parallel second fundamental form can be obtained in this way.

Mathematics Subject Classifications (2000): 53B25, 53B20, 53B21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose, W.: Higher order Grassmann bundles, Topology 3 (Suppl. 2) (1964), 199–238.

    MathSciNet  Google Scholar 

  2. Backes, R. A. and Reckziegel, H.: On symmetric submanifolds of spaces of constant curvature, Math. Ann. 263 (1983), 419–433.

    Article  MathSciNet  Google Scholar 

  3. Berndt, J., Eschenburg, J.-H., Naitoh, H. and Tsukada, K.: Symmetric submanifolds associated with irreducible symmetric R-spaces, Math. Ann. 332 (2005), 721–737.

    Article  MathSciNet  Google Scholar 

  4. Besse, A. L.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  5. Blaschke, W. and Leichtweiss, K.: Elementare Differentialgeometrie, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  6. Bröcker, T. and Dieck, T. tom: Representations of Compact Lie Groups, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  7. Boothby, W. M.: An Introduction to Differential Manifolds and Riemannian Geometry, 2nd edn, Academic Press, Berlin, 1986.

    Google Scholar 

  8. Bourbaki, N.: Variétés différentielles et analytiques, fascicule de résultats, Hermann, Paris, 1967.

    Google Scholar 

  9. Cartan, H.: Calcul différentiel, Hermann, Paris, 1967.

    Google Scholar 

  10. Chen, B.-Y.: Geometry of Submanifolds, Marcel Dekker, New York, 1973.

    Google Scholar 

  11. Dombrowski, P.: Differentiable maps into riemannian manifolds of constant stable osculating rank. Part 1, J. Reine Angew. Math. 274/275 (1975), 310–341.

    MathSciNet  Google Scholar 

  12. Erbacher, J.: Reduction of the codimension of an isometric immersion, J. Differential Geom. 5 (1971), 333–340.

    MATH  MathSciNet  Google Scholar 

  13. Ferus, D.: Symmetric submanifolds of Euclidean space, Math. Ann. 247 (1980), 81–93.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kobayashi, S. and Nomizu, K.: Foundations of Differential Geometry, Vols. 1 and 2, Interscience, New York, 1963/1969.

    Google Scholar 

  15. Leung, D. S. and Nomizu, K.: The axiom of spheres in Riemannian geometry, J. Differential Geom. 5 (1971), 487–489.

    MathSciNet  Google Scholar 

  16. Lumiste, Ü.: Submanifolds with parallel fundamental form. In: F. Dillen et al. (eds), Handbook of Differential Geometry, Vol. I, North-Holland, Amsterdam, 2000, pp. 779–864.

    Google Scholar 

  17. Naitoh, H.: Symmetric submanifolds of compact symmetric spaces, Tsukuba J. Math. 10 (1986), 215–242.

    MATH  MathSciNet  Google Scholar 

  18. Naitoh, H. and Takeuchi, M.: Symmetric submanifolds of symmetric spaces, Sugaku 2 (1989), 157–188.

    MathSciNet  Google Scholar 

  19. Nomizu, K. and Yano, K.: On circles and spheres in Riemannian geometry, Math. Ann. 210 (1974), 163–170.

    Article  MathSciNet  Google Scholar 

  20. Nübel, F.: On integral manifolds for vector space distributions, Math. Ann. 294 (1992), 1–7.

    MATH  MathSciNet  Google Scholar 

  21. Poor, W. A.: Differential Geometric Structures, McGraw-Hill, New York, 1981.

    Google Scholar 

  22. Pawel, K. and Reckziegel, H.: Affine submanifolds and the theorem of Cartan–Ambrose–Hicks, Kodai Math. J. 25 (2002), 341–356.

    MathSciNet  Google Scholar 

  23. Pawel, K. and Reckziegel, H.: On the existence of sperically bent submanifolds, an analogue of a theorem of E. Cartan, Kodai Math. J. 26 (2003), 199–220.

    MathSciNet  Google Scholar 

  24. Reckziegel, H.: On the problem whether the image of a given differentiable map into a Riemannian manifold is contained in a submanifold with parallel second fundamental form, J. Reine Angew. Math. 325 (1981), 87–103.

    MATH  MathSciNet  Google Scholar 

  25. Strübing, W.: Symmetric submanifolds of Riemannian manifolds, Math. Ann. 245 (1979), 37–44.

    Article  MATH  MathSciNet  Google Scholar 

  26. Takeuchi, M.: Parallel submanifolds of space forms. In: Manifolds and Lie Groups, Papers in Honour of Y. Matsushima, Birkhäuser, Boston, 1981, pp. 429–447.

    Google Scholar 

  27. Tsukada, K.: Totally geodesic submanifolds and curvature-invariant subspaces, Kodai Math. J. 19 (1996), 395–437.

    MATH  MathSciNet  Google Scholar 

  28. Vilms, J.: Totally geodesic maps, J. Differential Geom. 4 (1970), 73–79.

    MATH  MathSciNet  Google Scholar 

  29. Vilms, J.: Submanifolds of euclidean space with parallel second fundamental form, Proc. Amer. Math. Soc. 32 (1972), 263–267.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tillmann Jentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, T., Reckziegel, H. Submanifolds with Parallel Second Fundamental Form Studied via the Gauss Map. Ann Glob Anal Geom 29, 51–93 (2006). https://doi.org/10.1007/s10455-006-1146-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-006-1146-7

Keywords

Navigation