Skip to main content

Advertisement

Log in

Curve Shortening and the Banchoff–Pohl Inequality in Symmetric Minkowski Geometries

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper the classical Banchoff–Pohl inequality, an isoperimetric inequality for nonsimple closed curves in the Euclidean plane, involving the square of the winding number, is generalized to symmetric Minkowski geometries. The proof uses the well-known curve shortening flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.: Parabolic equations for curves on surfaces. Part I. Curves with p-integrable curvature, Ann. Math. 132 (1990) 451–483.

    Article  MathSciNet  Google Scholar 

  2. Angenent, S.: Parabolic equations for curves on surfaces. Part II. Intersections, blow-up and generalized solutions, Ann. Math. 133 (1991) 171–215.

    Article  MathSciNet  Google Scholar 

  3. Banchoff, T. F. and Pohl, W. F.: A generalization of the isoperimetric inequality, J. Diff. Geom. 6 (1971), 171–192.

    MathSciNet  Google Scholar 

  4. Benson, R. V.: Euclidean Geometry and Convexity, New York: McGraw-Hill, 1966.

    MATH  Google Scholar 

  5. Busemann, H.: The isoperimetric problem in the Minkowski plane, Am. J. Math. 69 (1947), 863–871.

    Article  MathSciNet  MATH  Google Scholar 

  6. Busemann, H.: The foundations of Minkowskian Geometry. Comment, Math. Helv. 24 (1950), 156–187.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chou, K. and Zhu, X.: The Curve Shortening Problem, Boca Raton: Chapman & Hall/CRC, 2001.

  8. Gage, M. E.: An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), 1225–1229.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gage, M. E.: Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993), 441–466.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gage, M. E.: Minkowski Plane Geometry and Anisotropic Curvature Flows of Curves. Curvature flows and related topics (Levico, 1994), 83–87, GAKUTO Intern. Ser. Math. Sci. Appl. 5, Tokyo, 1995.

  11. Gage, M. E. and Hamilton, R. S.: The heat equation shrinking convex plane curves, J. Diff. Geom. 23 (1986), 69–96.

    MathSciNet  MATH  Google Scholar 

  12. Gage, M. E. and Li, Y.: Evolving plane curves by curvature in relative geometries. II, Duke Math. J. 75 (1994), 79–98.

    Article  MathSciNet  MATH  Google Scholar 

  13. Grayson, M. A.: The heat equation shrinks embedded plane curves to round curves, J. Diff. Geom. 26 (1987), 285–314.

    MathSciNet  MATH  Google Scholar 

  14. Guggenheimer, H.: Pseudo-Minkowski differential geometry, Ann. Pura Appl. IV. Ser. 70 (1965), 305–370.

    Article  MathSciNet  MATH  Google Scholar 

  15. Leichtweiss, K.: Konvexe Mengen, Berlin, Heidelberg, New York: Springer, 1980.

  16. Santaló, L. A.: Integral Geometry and Geometric Probability, Reading, MA: Addison-Wesley, 1976.

    MATH  Google Scholar 

  17. Süssmann, B.: Curve shortening flow and the Banchoff–Pohl inequality on surfaces of nonpositive curvature, Contr. Alg. Geom. 40 (1999), 203–215.

    MATH  Google Scholar 

  18. Thompson, A. C.: Minkowski Geometry, Encycl. Math. Sci. Appl., Vol. 63, Cambridge University Press, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Su˙ssmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su˙ssmann, B. Curve Shortening and the Banchoff–Pohl Inequality in Symmetric Minkowski Geometries. Ann Glob Anal Geom 29, 323–332 (2006). https://doi.org/10.1007/s10455-005-9005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10455-005-9005-5

Key words

Navigation