Annals of Global Analysis and Geometry

, Volume 28, Issue 3, pp 211–231 | Cite as

Existence of Symplectic Structures on Torus Bundles Over Surfaces

  • Rafał WalczakEmail author


Let E be the total space of a locally trivial torus bundle over a surface Σ g of genus g > 1. Using Seiberg–Witten theory and spectral sequences, we prove that E carries a symplectic structure if and only if the homology class of the fiber [T2] is nonzero in H2(E, ).


SW-invariant symplectic form Thurston norm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldridge, S.: Seiberg–Witten invariants of 4-manifolds with free circle actions, Comm. Contemp. Math. 3 (2001), 341–353.CrossRefGoogle Scholar
  2. 2.
    Baldridge, S.: Seiberg–Witten invariants, orbifolds, and circle actions, Trans. Amer. Math. Soc. 355 (2003), 1669–1697 (electronic).CrossRefGoogle Scholar
  3. 3.
    Blank, S. and Laudenbach, F.: Isotopie de formes fermées en dimension trois, Invent. Math. 54 (1979), 103–177.CrossRefGoogle Scholar
  4. 4.
    Bouyakoub, A.: Sur les fibrés principaux de dimension 4, en tores, munis de structures symplectiques invariantes et leurs structures complexes, C. R. Acad. Sci. Paris, Sér. I 306 (1988), 417–420.Google Scholar
  5. 5.
    Bott, R. and Tu, L.: Differential Forms in Algebraic Topology, Grad. Text in Math. 82, Springer, New York, 1982.Google Scholar
  6. 6.
    Etgü, T.: Lefschetz fibrations, complex structures and Seifert fibrations on S1 × M3, Algebr. Geom. Topol. 1 (2001), 469–489.CrossRefGoogle Scholar
  7. 7.
    Friedman, R. and Morgan, J.: Algebraic surfaces and Seiberg–Witten invariants, J. Algebraic Geom. 6 (1997), 445–479.Google Scholar
  8. 8.
    Hajduk, B. and Walczak, R.: Symplectic forms invariant under free circle actions on 4-manifolds. arXiv:math.SG/0312465.Google Scholar
  9. 9.
    Geiges, H.: Symplectic structures on T2-bundles over T2, Duke Math. J. 67 (1992), 539–555.CrossRefGoogle Scholar
  10. 10.
    Gompf, R.: A topological characterization of symplectic manifolds. arXiv:math.SG/0210103.Google Scholar
  11. 11.
    Gompf, R. and Stipsicz, A.: 4-Manifolds and Kirby Calculus, Amer. Math. Soc., Providence, 1999.Google Scholar
  12. 12.
    Kotschick, D.: Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998), 227–234.Google Scholar
  13. 13.
    Lawson, H. B. and Michelsohn, M.-L.: Spin Geometry, Princeton University Press, 1989.Google Scholar
  14. 14.
    McDuff, D.: From symplectic deformation to isotopy. In: R. Stern (ed.), First IP Lectures Series. International Press, 1998.Google Scholar
  15. 15.
    Mrowka, T., Ozsváth, P. and Yu, B.: Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), 685–791.Google Scholar
  16. 16.
    McDuff, D. and Salamon, D.: Introduction to Symplectic Topology, 2nd edn, Clarendon Press, Oxford, 1998.Google Scholar
  17. 17.
    McMullen, C. T. and Taubes, C. H.: 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations, Math. Res. Lett. 6 (1999), 681–696.Google Scholar
  18. 18.
    Plante, J. F.: Foliations with measure preserving holonomy, Ann. Math. 102 (1975), 327–361.Google Scholar
  19. 19.
    Smith, I.: Symplectic submanifolds from surface fibrations, Pacific J. Math. 198 (2001), 197–205.Google Scholar
  20. 20.
    Spanier, E. H.: Algebraic Topology, McGraw-Hill, 1966.Google Scholar
  21. 21.
    Sullivan, D.: A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), 218–223.Google Scholar
  22. 22.
    Taubes, C. H.: The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), 809–822.Google Scholar
  23. 23.
    Taubes, C. H.: More constrains on symplectic forms from the Seiberg–Witten invariants, Math. Res. Lett. 2 (1995), 9–13.Google Scholar
  24. 24.
    Taubes, C. H.: The Seiberg–Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001), 441–519.CrossRefGoogle Scholar
  25. 25.
    Thurston, W.: Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467–468.Google Scholar
  26. 26.
    Thurston, W.: A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc. 59 (1986), 99–130.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Mathematical InstituteWrocław UniversityWrocławPoland
  2. 2.Institute of Mathematics of the Polish Academy of SciencesWarsawPoland

Personalised recommendations