Annual patterns of litter decomposition in the channel and riparian areas of an intermittent stream

Abstract

Intermittent streams, dominant in arid and semi-arid regions, are considered to be more representative of global river networks than perennial rivers. The impacts of constant changes in hydrological regime on the functioning of these streams and associated riparian areas does, however, remain to be elucidated. In this study, litter derived from two deciduous tree species (chestnut and oak) was used to compare microbial–decomposition patterns between an intermittent stream channel and its riparian area over a 1-year period. The stream channel exhibited higher decomposition rates than the riparian area for litter from both species, and higher fungal biomass only for chestnut. Despite a prolonged absence of streambed surface water (254 days), differences in hydrological conditions in the wetter seasons (autumn and winter) shape the decomposition dynamics in both zones throughout the whole hydrological cycle. The results point out the importance of the “hydrological imprint” for the leaves’ degradation; long-term studies are advisable over short-term ones to better understand the functioning of intermittent streams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The authors are pleasured to share the data after formal request.

References

  1. Abril M, Muñoz I, Menéndez M (2016) Heterogeneity in leaf litter decomposition in a temporary Mediterranean stream during flow fragmentation. Sci Total Environ 553:330–339. https://doi.org/10.1016/j.scitotenv.2016.02.082

    CAS  Article  PubMed  Google Scholar 

  2. Acuña V, Muñoz I, Giorgi A et al (2005) Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. J North Am Benthol Soc 24:919–933. https://doi.org/10.1899/04-078.1

    Article  Google Scholar 

  3. Arce MI, Mendoza-Lera C, Almagro M et al (2019) A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci Rev 188:441–453

    CAS  Article  Google Scholar 

  4. Arias-Real R, Menéndez M, Abril M et al (2018) Quality and quantity of leaf litter: both are important for feeding preferences and growth of an aquatic shredder. PLoS ONE 13:e0208272. https://doi.org/10.1371/journal.pone.0208272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Arroita M, Flores L, Larrañaga A et al (2018) Hydrological contingency: drying history affects aquatic microbial decomposition. Aquat Sci 80:31. https://doi.org/10.1007/s00027-018-0582-3

    Article  Google Scholar 

  6. Baldy V, Chauvet E, Charcosset J, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstream and floodplain pond of a large river. Aquat Microb Ecol 28:25–36. https://doi.org/10.3354/ame028025

    Article  Google Scholar 

  7. Bastias E, Ribot M, Romaní AM et al (2018) Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality. Hydrobiologia 806:333–346. https://doi.org/10.1007/s10750-017-3372-3

    CAS  Article  Google Scholar 

  8. Bhatnagar JM, Peay KG, Treseder KK (2018) Litter chemistry influences decomposition through activity of specific microbial functional guilds. Ecol Monogr 88:429

    Article  Google Scholar 

  9. Boyero L, Pearson RG, Gessner MO et al (2011) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–294. https://doi.org/10.1111/j.1461-0248.2010.01578.x

    Article  PubMed  Google Scholar 

  10. Brandt LA, King JY, Hobbie SE et al (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13:765–781. https://doi.org/10.1007/s10021-010-9353-2

    CAS  Article  Google Scholar 

  11. Bruder A, Chauvet E, Gessner MO (2011) Litter diversity, fungal decomposers and litter decomposition under simulated stream intermittency. Funct Ecol 25:1269–1277. https://doi.org/10.1111/j.1365-2435.2011.01903.x

    Article  Google Scholar 

  12. Canhoto C, Calapez R, Gonçalves AL, Moreira-Santos M (2013) Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshw Sci 32:411–424. https://doi.org/10.1899/12-062.1

    Article  Google Scholar 

  13. Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468

    Article  Google Scholar 

  14. Chauvet E, Cornut J, Sridhar KR et al (2016) Beyond the water column: aquatic hyphomycetes outside their preferred habitat. Fungal Ecol 19:112–127. https://doi.org/10.1016/j.funeco.2015.05.014

    Article  Google Scholar 

  15. Cornut J, Ferreira V, Gonçalves AL et al (2015) Fungal alteration of the elemental composition of leaf litter affects shredder feeding activity. Freshw Biol 60:1755–1771

    CAS  Article  Google Scholar 

  16. Corti R, Datry T, Drummond L, Larned ST (2011) Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquat Sci 73:537–550

    Article  Google Scholar 

  17. Datry T, Boulton AJ, Bonada N et al (2018) Flow intermittence and ecosystem services in rivers of the Anthropocene. J Appl Ecol 55:353–364. https://doi.org/10.1111/1365-2664.12941

    Article  PubMed  PubMed Central  Google Scholar 

  18. Datry T, Corti R, Claret C, Philippe M (2011) Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory.” Aquat Sci 73:471–483

    Article  Google Scholar 

  19. Datry T, Larned ST, Tockner K (2014) Intermittent rivers: A challenge for freshwater ecology. Bioscience 64:229–235. https://doi.org/10.1093/biosci/bit027

    Article  Google Scholar 

  20. Dieter D, von Schiller D, García-Roger EM et al (2011) Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquat Sci 73:599–609. https://doi.org/10.1007/s00027-011-0231-6

    Article  Google Scholar 

  21. Dupont S, Lemetais G, Ferreira T et al (2012) Ergostol biosynthesis: a fungal pathway for life on land. Evolution 66:2961–2968. https://doi.org/10.5061/dryad.pd28pm7n

    CAS  Article  PubMed  Google Scholar 

  22. Ferreira V, Chauvet E (2011) Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob Chang Biol 17:551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x

    Article  Google Scholar 

  23. Ferreira V, Graça MS, de Lima JLMP, Gomes R (2006) Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch für Hydrobiol 165:493–513. https://doi.org/10.1127/0003-9136/2006/0165-0493

    CAS  Article  Google Scholar 

  24. Franken RJM, Waluto B, Peeters ETHM et al (2005) Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshw Biol 50:459–466

    Article  Google Scholar 

  25. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microbiol 59:502–507

    CAS  Article  Google Scholar 

  26. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  27. Gionchetta G, Oliva F, Romaní AM, Bañeras L (2020) Hydrological variations shape diversity and functional responses of streambed microbes. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136838

    Article  PubMed  Google Scholar 

  28. Gonçalves AL, Graça MAS, Canhoto C (2015) Is diversity a buffer against environmental temperature fluctuations? - A decomposition experiment with aquatic fungi. Fungal Ecol 17:96–102. https://doi.org/10.1016/j.funeco.2015.05.013

    Article  Google Scholar 

  29. Gonçalves AL, Lírio AV, Graça MAS, Canhoto C (2016) Fungal species diversity affects leaf decomposition after drought. Int Rev Hydrobiol 101:78–86. https://doi.org/10.1002/iroh.201501817

    Article  Google Scholar 

  30. Gonçalves AL, Simões S, Bärlocher F, Canhoto C (2019) Leaf litter microbial decomposition in salinized streams under intermittency. Sci Total Environ 653:1204–1212. https://doi.org/10.1016/j.scitotenv.2018.11.050

    CAS  Article  PubMed  Google Scholar 

  31. Graça MAS, Ferreira RCF (1995) The ability of selected aquatic hyphomycetes and terrestrial fungi to decompose leaves in freshwater. Sydowia 47:167–179

    Google Scholar 

  32. Harms TK, Grimm NB (2012) Responses of trace gases to hydrologic pulses in desert floodplains. J Geophys Res Biogeosciences. https://doi.org/10.1029/2011JG001775

    Article  Google Scholar 

  33. Hutchens JJJ, Wallace JB (2002) Ecosystem linkages between southern Appalachian headwater streams and their banks: Leaf litter breakdown and invertebrate assemblages. Ecosystems 5:80–91. https://doi.org/10.1007/s10021-001-0057-5

    Article  Google Scholar 

  34. Jabiol J, Lecerf A, Lamothe S et al (2019) Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities. Microb Ecol. https://doi.org/10.1007/s00248-019-01353-3

    Article  PubMed  Google Scholar 

  35. Kohl L, Myers-Pigg A, Edwards KA et al (2020) Microbial inputs at the litter layer translate climate into altered organic matter properties. Glob Chang Biol. https://doi.org/10.1111/gcb.15420

    Article  PubMed  Google Scholar 

  36. Kuehn KA (2016) Lentic and lotic habitats as templets for fungal communities: Traits, adaptations, and their significance to litter decomposition within freshwater ecosystems. Fungal Ecol 19:135–154. https://doi.org/10.1016/j.funeco.2015.09.009

    Article  Google Scholar 

  37. Kuehn KA, Francoeur SN, Findlay RH, Neely RK (2014) Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95:749–762

    Article  Google Scholar 

  38. Langhans SD, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509. https://doi.org/10.1007/s00442-005-0282-2

    Article  PubMed  Google Scholar 

  39. Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic Appl Ecol 9:598–605. https://doi.org/10.1016/j.baae.2007.11.003

    Article  Google Scholar 

  40. LeRoy CJ, Fischer DG, Halstead K et al (2011) A fungal endophyte slows litter decomposition in streams. Freshw Biol 56:1426–1433. https://doi.org/10.1111/j.1365-2427.2011.02581.x

    Article  Google Scholar 

  41. Lohse KA, Gallo EL, Meixner T (2020) Influence of climate and duration of stream water presence on rates of litter decomposition and nutrient dynamics in temporary streams and surrounding environments of southwestern USA. Front Water 2:571044

    Article  Google Scholar 

  42. Maamri A, Bärlocher F, Pattee E, Chergui H (2001) Fungal and bacterial colonisation of Salix pedicellata leaves decaying in permanent and intermittent streams in Eastern Morocco. Int Rev Hydrobiol 86:337–348

    CAS  Article  Google Scholar 

  43. Martínez A, Pérez J, Molinero J et al (2015) Effects of flow scarcity on leaf-litter processing under oceanic climate conditions in calcareous streams. Sci Total Environ 503:251–257

    Article  Google Scholar 

  44. Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. https://doi.org/10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2

    Article  Google Scholar 

  45. Mora-Gómez J, Boix D, Duarte S et al (2020) Legacy of summer drought on autumnal leaf litter processing in a temporary mediterranean stream. Ecosystems 23:989–1003. https://doi.org/10.1007/s10021-019-00451-0

    CAS  Article  Google Scholar 

  46. Mora-Gómez J, Duarte S, Cássio F et al (2018) Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream. Sci Total Environ 621:486–496. https://doi.org/10.1016/j.scitotenv.2017.11.055

    CAS  Article  PubMed  Google Scholar 

  47. Mori N, Simčič T, Brancelj A et al (2017) Spatiotemporal heterogeneity of actual and potential respiration in two contrasting floodplains. Hydrol Process 31:2622–2636

    Article  Google Scholar 

  48. Niyogi DK, Hu C-Y, Vessell BP (2020) Response of stream fungi on decomposing leaves to experimental drying. Int Rev Hydrobiol 105:52–58

    Article  Google Scholar 

  49. Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshw Biol 4:343–368

    Article  Google Scholar 

  50. Pieristè M, Chauvat M, Kotilainen TK et al (2019) Solar UV-A radiation and blue light enhance tree leaf litter decomposition in a temperate forest. Oecologia 191:191–203. https://doi.org/10.1007/s00442-019-04478-x

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pinna M, Basset A (2004) Summer drought disturbance on plant detritus decomposition processes in three River Tirso (Sardinia, Italy) sub-basins. Hydrobiologia 522:311–319

    Article  Google Scholar 

  52. Pozo J, Casas J, Menéndez M et al (2011) Leaf-litter decomposition in headwater streams: a comparison of the process among four climatic regions. J North Am Benthol Soc 30:935–950. https://doi.org/10.1899/10-153.1

    Article  Google Scholar 

  53. R Development Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  54. Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. https://doi.org/10.1038/nature12760

    CAS  Article  PubMed  Google Scholar 

  55. Razavi BS, Liu S, Kuzyakov Y (2017) Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol Biochem 105:236–243. https://doi.org/10.1016/j.soilbio.2016.11.026

    CAS  Article  Google Scholar 

  56. Romaní AM, Chauvet E, Febria C et al (2017) The biota of intermittent rivers and ephemeral streams: prokaryotes, fungi, and protozoans. Elsevier Inc, Amsterdam

    Google Scholar 

  57. Schneider A, Jost A, Coulon C et al (2017) Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophys Res Lett 44:2773–2781

    Article  Google Scholar 

  58. Skoulikidis NT, Sabater S, Datry T et al (2017) Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Sci Total Environ 577:1–18. https://doi.org/10.1016/j.scitotenv.2016.10.147

    CAS  Article  PubMed  Google Scholar 

  59. Sridhar KR, Bärlocher F (1993) Aquatic hyphomycetes on leaf litter in and near a stream in Nova Scotia, Canada. Mycol Res 97:1530–1535. https://doi.org/10.1016/S0953-7562(09)80229-3

    Article  Google Scholar 

  60. Steward AL, Von Schiller D, Tockner K et al (2012) When the river runs dry: human and ecological values of dry riverbeds. Front Ecol Environ 10:202–209. https://doi.org/10.1890/110136

    Article  Google Scholar 

  61. von Schiller D, Bernal S, Dahm CN, Martí E (2017) Nutrient and organic matter dynamics in intermittent rivers and ephemeral streams. Intermittent rivers and ephemeral streams: ecology and management. Elsevier Inc., Amsterdam, pp 135–160

    Google Scholar 

  62. Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by FCT, within the POCH – Human Capital Operating Program, to SS (Fellowship Reference SFRH/BD/119133/2016), co-funded by the European Social Fund and MCTES national funds, is gratefully acknowledged. Also financed by a) Project UID/BIA/04004/2013 co-funded by FCT/MEC through national funds and by FEDER, within the PT2020 Partnership Agreement, and COMPETE 2020; and b) Project ReNATURE—Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145-FEDER-000007), which also supported AM (fellowship reference ReNATURE – BPD11_2). NC was supported by the PhD Grant SFRH/BD/133352/2017 and JA by the post doc Grant SFRH/BPD/123087/2016.

Author information

Affiliations

Authors

Contributions

Design of the experiment was done by ALG, THJ, JPS, CC. Field procedures were carried out by SS, NC, JA, AAS. Laboratory procedures were carried out by SS, ALG. Data treatment was done by SS, AM. Writing the original draft was done by SS, AM, CC. Review of the draft was done by SS, AM, ALG, NC, JA, AAS, THJ, JPS, CC.

Corresponding author

Correspondence to Aingeru Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

The authors consent to participate in peer review process.

Consent for publication

The authors consent for publication in the terms of the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simões, S., Martínez, A., Gonçalves, A.L. et al. Annual patterns of litter decomposition in the channel and riparian areas of an intermittent stream. Aquat Ecol (2021). https://doi.org/10.1007/s10452-021-09841-w

Download citation

Keywords

  • Leaf processing
  • Microbial activity
  • Streambed
  • Riparian floor
  • Hydrological regime