In situ measurements of bioluminescence response of Gonyaulax spinifera to various mechanical stimuli

Abstract

A conspicuous bioluminescence during nighttime was reported in an aquaculture farm in the Cochin estuary due to Gonyaulax spinifera bloom on March 20, 2020. In situ measurements on bioluminescence was carried out during nighttime to quantify the response of G. spinifera to various mechanical stimuli. The bioluminescence intensity (BI) was measured using Glowtracka, an advanced single channel sensor, attached to a Conductivity–Temperature–Depth Profiler. In steady environment, without any external stimuli, the bioluminescence generated due to the movement of fishes and shrimps in the water column was not detected by the sensor. However, stimuli such as a hand splash, oar and swimming movements, and a mixer could generate measurable bioluminescence responses. An abundance of ~ 2.7 × 106 cells L−1 of G. spinifera with exceptionally high chlorophyll a of 25 mg m−3 was recorded. The BI in response to hand splash was recorded as high as 1.6 × 1011 photons cm−2 s−1. Similarly, BI of ~ 1–6 × 1010 photons cm−2 s−1 with a cumulative bioluminescence of ~ 2.51 × 1012 photons cm−2 (for 35 s) was recorded when there is a mixer with a constant force of 494 N/800 rpm min−1. The response of G. spinifera was spontaneous with no time lapse between application of stimuli and the bioluminescence response. Interestingly, in natural environment, application of stimulus for longer time periods (10 min) does not lower the bioluminescence intensity due to the replenishment of water thrusted in by the mixer from surrounding areas. We also demonstrated that the bioluminescence intensity decreases with increase in distance from the source of stimuli (mixer) (av. 1.84 × 1010 photons cm−2 s−1 at 0.2 m to av. 0.05 × 1010 photons cm−2 s−1 at 1 m). The BI was highest in the periphery of the turbulent wake generated by the stimuli (av. 3.1 × 1010 photons cm−2 s−1) compared to the center (av. 1.8 × 1010 photons cm−2 s−1). When the stimuli was applied vertically down, the BI decreased from 0.2 m (0.3 × 1010 photons cm−2 s−1) to 0.5 m (0.10 × 1010 photons cm−2 s−1). Our study demonstrates that the BI of G. spinifera increases with increase in mechanical stimuli and decreases with increase in distance from the stimuli.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data availability

All data are fully available without restriction.

References

  1. Aiken J, Kelly J (1984) A solid state sensor for mapping and profiling stimulated bioluminescence in the marine environment. Cont Shelf Res 3(4):455–464. https://doi.org/10.1016/0278-4343(84)90022-0

    Article  Google Scholar 

  2. Biggley WH, Swift E, Buchanan RJ, Seliger HH (1969) Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahamense, Gonyaulax polyedra, and Pyrocystis lunula. J Gen Physiol 54(1):96–122. https://doi.org/10.1085/jgp.54.1.96

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Buskey EJ, Swift E (1990) An encounter model to predict natural planktonic bioluminescence. Limnol Oceanogr 35(7):1469–1485. https://doi.org/10.4319/lo.1990.35.7.1469

    Article  Google Scholar 

  4. Buskey EJ, Strom S, Coulter C (1992) Biolumiscence of heterotrophic dinoflagellates from Texas coastal waters. J Exp Mar Biol Ecol 159(1):37–49. https://doi.org/10.1016/0022-0981(92)90256-A

    Article  Google Scholar 

  5. Cussatlegras AS, Le Gal P (2005) Dinoflagellate bioluminescence in response to mechanical stimuli in water flows. Nonlinear Process Geophys 12(3):337–343

    Article  Google Scholar 

  6. Eckert R (1966) Subcellular sources of luminescence in Noctiluca. Science 151(3708):349–352. https://doi.org/10.1126/science.151.3708.349

    CAS  Article  PubMed  Google Scholar 

  7. Esaias WE (1972) Studies on the occurrence, physiology, and ecology of bioluminescence in dinoflagellates, Ph.D. thesis, Oregon State Univ., Corvallis pp. 76

  8. Fritz L, Morse D, Hastings JW (1990) The circadian bioluminescence rhythm of Gonyaulax is related to daily variations in the number of light-emitting organelles. J Cell Sci 95(2):321–328

    PubMed  Google Scholar 

  9. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Ann Rev Mar Sci 2:443–493. https://doi.org/10.1146/annurev-marine-120308-081028

    Article  PubMed  Google Scholar 

  10. Hanley KA, Widder EA (2017) Bioluminescence in dinoflagellates: evidence that the adaptive value of bioluminescence in dinoflagellates is concentration dependent. Photochem 93(2):519–530. https://doi.org/10.1111/php.12713

    CAS  Article  Google Scholar 

  11. Harrison PJ, Furuya K, Glibert PM, Xu J, Liu HB, Yin K, Lee JH, Anderson DM, Gowen R, Al-Azri AR, Ho AYT (2011) Geographical distribution of red and green Noctiluca scintillans. Chin J Oceanol Limnol 29(4):807–831. https://doi.org/10.1007/s00343-011-0510-z

    Article  Google Scholar 

  12. Hastings JW, Krasnow R (1981) Temporal regulation in the individual Gonyaulax cell. Int J Cell Biol. Springer, Berlin, Heidelberg, pp 815–822. https://doi.org/10.1007/978-3-642-67916-2_91

  13. Krasnow R, Dunlap JC, Taylor W, Hastings JW, Vetterling W, Gooch V (1980) Circadian spontaneous bioluminescent glow and flashing of Gonyaulax polyedra. J Comp Physiol 138(1):19–26. https://doi.org/10.1007/BF00688730

    Article  Google Scholar 

  14. Lapota D, Rosenberger DE, Lieberman SH (1992) Planktonic bioluminescence in the pack ice and the marginal ice zone of the Beaufort Sea. Mar Biol 112(4):665–675. https://doi.org/10.1007/BF00346185

    Article  Google Scholar 

  15. Latz MI, Rohr J (1999) Luminescent response of the red tide dinoflagellate Lingulodinium polyedrum to laminar and turbulent flow. Limnol Oceanogr 44(6):1423–1435. https://doi.org/10.4319/lo.1999.44.6.1423

    Article  Google Scholar 

  16. Latz MI, Rohr J (2005) Glowing with the flow. OPN 16(10):40–45. https://doi.org/10.1364/OPN.16.10.000040

    CAS  Article  Google Scholar 

  17. Latz MI, Nauen JC, Rohr J (2004) Bioluminescence response of four species of dinoflagellates to fully developed pipe flow. J Plankton Res 26(12):1529–1546. https://doi.org/10.1093/plankt/fbh141

    Article  Google Scholar 

  18. Latz MI, Bovard M, Van Delinder V, Segre E, Rohr J, Groisman A (2008) Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J Exp Mar Biol Ecol 211(17):2865–2875. https://doi.org/10.1242/jeb.011890

    Article  Google Scholar 

  19. Le Tortorec AH, Hakanen P, Kremp A, Olsson J, Suikkanen S, Simis SG (2014) Stimulated bioluminescence as an early indicator of bloom development of the toxic dinoflagellate Alexandrium ostenfeldii. J Plankton Res 36(2):412–423. https://doi.org/10.1093/plankt/fbt116

    CAS  Article  Google Scholar 

  20. Lindström J, Latz MI (2019) Bioluminescence in Eukaryotic Microbes. Encyclopedia of Microbiology, 4th edn. Elsevier, Amsterdam, pp 526–535

    Google Scholar 

  21. Lynch RV (1978) The occurrence and distribution of surface bioluminescence in the oceans during 1966 through 1977. U.S. Naval Research Laboratory, Report, 8210

  22. Marcinko CL, Allen JT, Poulton AJ, Painter SC, Martin AP (2012) Diurnal variations of dinoflagellate bioluminescence within the open-ocean north-east Atlantic. J Plankton Res 35(1):177–190. https://doi.org/10.1093/plankt/fbs081

    CAS  Article  Google Scholar 

  23. Marcinko CL, Painter SC, Martin AP, Allen JT (2013) A review of the measurement and modelling of dinoflagellate bioluminescence. Prog Oceanogr 109:117–129. https://doi.org/10.1016/j.pocean.2012.10.008

    Article  Google Scholar 

  24. Moline MA, Oliver MJ, Mobley CD, Sundman L, Bensky T, Bergmann T, Bissett WP, Case J, Raymond EH, Schofield OME (2007) Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water leaving radiance. J Geophys Res Oceans. https://doi.org/10.1029/2007JC004138

    Article  Google Scholar 

  25. Prabhudessai SS, Rivonker CU (2020) Distribution of dinoflagellate cysts along the salinity gradient in two tropical estuaries along the West coast of India. Mar Micropaleontol 156:101852. https://doi.org/10.1016/j.marmicro.2020.101852

    Article  Google Scholar 

  26. Rhodes L, McNabb P, De Salas M, Briggs L, Beuzenberg V, Gladstone M (2006) Yessotoxin production by Gonyaulax spinifera. Harmful Algae 5(2):148–155. https://doi.org/10.1016/j.hal.2005.06.008

    CAS  Article  Google Scholar 

  27. Riccardi M, Guerrini F, Roncarati F, Milandri A, Cangini M, Pigozzi S, Riccardi E, Ceredi A, Ciminiello P, Dell’Aversano C, Fattorusso E (2009) Gonyaulax spinifera from the Adriatic Sea: toxin production and phylogenetic analysis. Harmful Algae 8(2):279–290. https://doi.org/10.1016/j.hal.2008.06.008

    CAS  Article  Google Scholar 

  28. Rodrigues RV, Patil JS, Sathish K, Anil AC (2019) Dinoflagellate planktonic-motile-stage and benthic-cyst assemblages from a monsoon-influenced tropical harbour: elucidating the role of environmental conditions. Estuar Coast Shelf Sci 226:106253. https://doi.org/10.1016/j.ecss.2019.106253

    Article  Google Scholar 

  29. Rodriguez JD, Haq S, Bachvaroff T, Nowak KF, Nowak SJ, Morgan D, Cherny VV, Sapp MM, Bernstein S, Bolt A, DeCoursey TE (2017) Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS One 12(2):e0171594. https://doi.org/10.1371/journal.pone.0171594

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Rohr J, Latz MI, Fallon ST, Nauen JC, Hendricks E (1998) Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J Exp Biol 201(9):1447–1460

    CAS  PubMed  Google Scholar 

  31. Shimomura O (2006) Bioluminescence: chemical principles and methods. World Scientific, Singapore

    Google Scholar 

  32. Sullivan JM, Swift E (1994) Photoinhibition of mechanically stimulable bioluminescence in the autotrophic dinoflagellate Ceratium fusus (Pyrrophyta). J Phycol 30(4):627–633

    Article  Google Scholar 

  33. Sweeney BM (1981) Variations in the bioluminescence per cell in dinoflagellates. In: Nealson KH (ed) Bioluminescence current perspectives. Burgess Publishing, California, pp 90–94

    Google Scholar 

  34. Swift E, Sullivan JM, Batchelder HP, Van Keuren J, Vaillancourt RD, Bidigare RR (1995) Bioluminescent organisms and bioluminescence measurements in the North Atlantic Ocean near latitude 59.5N, longitude 21W. J Geophys Res Oceans 100:6527–6547

    Article  Google Scholar 

  35. Tomas CR (1997) Identifying marine phytoplankton. Elsevier, Amsterdam, pp 507–509

    Google Scholar 

  36. Valiadi M, Iglesias-Rodriguez D (2013) Understanding bioluminescence in dinoflagellates—how far have we come? Microorganisms 1(1):3–25. https://doi.org/10.3390/microorganisms1010003

    Article  PubMed  PubMed Central  Google Scholar 

  37. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708. https://doi.org/10.1126/science.1174269

    CAS  Article  PubMed  Google Scholar 

  38. Widder EA, Bernstein SA, Bracher DF, Case JF, Reisenbichler KR, Torres JJ, Robison BH (1989) Bioluminescence in the monterey submarine canyon: image analysis of video recordings from a midwater submersible. Mar Biol 100(4):541–551. https://doi.org/10.1007/BF00394831

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful for the support and facilities provided by the Director, Council of Scientific Industrial Research (CSIR)—National Institute of Oceanography (NIO), Goa, and Scientist-in Charge of Regional Centre, NIO, Kochi. Authors are also thankful to the Defense Research and Development Organisation (DRDO)—Naval Research Board (NRB), Govt. of India, for financial support through Grant-in-aid project, GAP 3157. Authors are grateful to Dr. NV Madhu, Senior Scientist, CSIR-NIO, RCK for the laboratory facilities and Dr. Arunpandi N (Senior Project Associate), CSIR-NIO, RCK, for SEM analysis. This in NIO contribution number 6677.

Funding

This work is funded by DRDO—Naval Research Board, Govt. of India, Grant-in-aid project, GAP-3157.

Author information

Affiliations

Authors

Contributions

VCR contributed to data collection; data analysis; and writing original draft, PA responsible for conceptualization, funding, supervision, and writing original draft, AP and MIP contributed to data collection and data analysis, MKR was involved in conceptualization and data collection, AAS contributed to data collection and data curation, and CMF was involved in data analysis.

Corresponding author

Correspondence to A. Parvathi.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vishal, C.R., Parvathi, A., Anil, P. et al. In situ measurements of bioluminescence response of Gonyaulax spinifera to various mechanical stimuli. Aquat Ecol (2021). https://doi.org/10.1007/s10452-021-09836-7

Download citation

Keywords

  • Dinoflagellate
  • Gonyaulax spinifera
  • Bioluminescence
  • Mechanical stimuli
  • Glowtracka
  • Cochin