Skip to main content
Log in

Comparison of community composition between Microcystis colony-attached and free-living bacteria, and among bacteria attached with Microcystis colonies of various sizes in culture

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

A better understanding of the distribution pattern of bacterial community in the Microcystis phycosphere will aid in elucidating the role of bacteria in the formation of cyanobacterial bloom. In the present study, we aimed to compare community composition between Microcystis colony-attached and free-living bacteria, as well as among bacteria attached with Microcystis colonies of various sizes in culture. In the exponentially growing cyanobacterial cultures, Proteobacteria was the most dominant phylum in each colony-attached bacterial community, whereas Bacteroidetes was the most dominant phylum in each free-living bacterial community. The analysis using an indirect PCA model and Bray–Curtis dissimilarity index indicated that the dissimilarity between colony-attached and free-living bacterial communities was greater in the exponentially growing cyanobacterial cultures, and it became smaller in the stationary cultures of Microcystis. In the exponential growth phase of Microcystis, the relative abundance of Proteobacteria in colony-attached bacterial communities tended to decrease with decreasing colony size, whereas the relative abundance of Bacteroidetes in colony-attached bacterial communities tended to increase. In the exponential growth phase of Microcystis, the community composition dissimilarity among bacteria attached with Microcystis colonies of various sizes could be ranked in a descending order as follows: > 100 µm versus < 50 µm; 50–100 µm versus < 50 µm; and > 100 µm versus 50–100 µm. Our data indicated that the community composition of Microcystis colony-attached bacteria was different from that of free-living bacteria, and the colony size of Microcystis played an important role in structuring the community composition of Microcystis-attached bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bagatini IL, Eiler A, Bertilsson S, Klaveness D, Tessarolli LP, Vieira AAH (2014) Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton. PLoS ONE 9:e85950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benyamina S, Baldacci-Cresp F, Couturier J, Chibani K, Hopkins J, Bekki A, Lajudie P, Rouhier N, Jacquot J, Alloing G (2013) Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation. Environ Microbiol 15:795–810

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briand E, Humbert J-F, Tambosco K, Bormans M, Gerwick WH (2016) Role of bacteria in the production and degradation of Microcystis cyanopeptides. Microbiologyopen 5:469–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunberg AK (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29:13–22

    Article  CAS  Google Scholar 

  • Cai YF, Shi LM, Li PF, Xing P, Yu Y, Kong FX (2009) Composition of bacterial community related to degrading the exopolysaccharide from the cyanobacterium Microcystis aeruginosa. J Lake Sci 21:369–374

    Article  CAS  Google Scholar 

  • Cai H, Jiang H, Krumholz LR, Yang Z (2014) Bacterial community composition of size-fractioned aggregates within the phycosphere of cyanobacterial blooms in a eutrophic freshwater lake. PLoS ONE 9:e102879

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao HS, Yang Z (2010) Variation in colony size of Microcystis aeruginosa in a eutrophic lake during recruitment and bloom formation. J Freshw Ecol 25:331–335

    Article  Google Scholar 

  • Cao XY, Zhou YY, Wang ZC, Song CL (2016) The contribution of attached bacteria to Microcystis bloom: evidence from field investigation and microcosm experiment. Geomicrobiol J 33:607–617

    Article  CAS  Google Scholar 

  • Commault AS, Laczka O, Siboni N, Tamburic B, Crosswell JR, Seymour JR, Ralph PJ (2017) Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater. J Power Sources 356:299–309

    Article  CAS  Google Scholar 

  • Du JJ, Zhao GY, Wang FY, Zhao D, Chen XX, Zhang SR, Jia Y, Tian XJ (2013) Growth stimulation of Microcystis aeruginosa by a bacterium from hyper-eutrophic water (Taihu Lake, China). Aquat Ecol 47:303–313

    Article  Google Scholar 

  • Dziallas C, Grossart HP (2011) Temperature and biotic factors influence bacterial communities associated with the cyanobacterium Microcystis sp. Environ Microbiol 13:1632–1641

    Article  PubMed  Google Scholar 

  • Fan Q, Xiao HJ, Wu Q, Wang SJ, Li PF (2017) Characterization of epiphytic bacteria associated with colonial Microcystis. J Lake Sci 29:617–624

    Article  Google Scholar 

  • Fulton RS, Paerl HW (1987) Effects of colonial morphology on zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol Oceanogr 32:634–644

    Article  Google Scholar 

  • Gan NQ, Xiao Y, Zhu L, Wu ZX, Liu J, Hu CL, Song LR (2012) The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14:730–742

    Article  CAS  PubMed  Google Scholar 

  • García-Cayuela T, Korany AM, Bustos I, de Cadiñanos PG, Requena T, Peláez C, Martínez-Cuesta MC (2014) Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res Int 57:44–50

    Article  CAS  Google Scholar 

  • García-Salamanca A, Molina-Henares MA, Dillewijn PV, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 6:36–44

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Acata S, Esquivel-Ríos I, Pérez-Sandoval MV, Navarro-Noya Y, Rojas-Valdez A, Thalasso F, Luna-Guido M, Dendooven L (2017) Bacterial community structure within an activated sludge reactor added with phenolic compounds. Appl Microbiol Biotechnol 101:3405–3414

    Article  CAS  PubMed  Google Scholar 

  • Grant MA, Kazamia E, Cicuta P, Smith AG (2014) Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures. ISME J 8:1418–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossart HP, Levold F, Allgaier M, Simon M, Brinkhoff T (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7:860–873

    Article  CAS  PubMed  Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangelcastro JI, Prosser JI, Balesdent J, Heulin T, Achouak W (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Jiang LJ, Yang LY, Xiao L, Shi XL, Gao G, Qin BQ (2007) Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia 581:161–165

    Article  CAS  Google Scholar 

  • Jones KL, Mikulski CM, Barnhorst A, Doucette GJ (2010) Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol Ecol 73:468–485

    CAS  PubMed  Google Scholar 

  • Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14:1466–1476

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Doucette GJ, Green DH (2006) Relationships between bacteria and harmful algae. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 243–255

    Chapter  Google Scholar 

  • Leloup M, Nicolau R, Pallier V, Yéprémian C, Feuillade-cathalifaud G (2013) Organic matter produced by algae and cyanobacteria: quantitative and qualitative characterization. J Environ Sci (China) 25:1089–1097

    Article  CAS  Google Scholar 

  • Li YX, Li DH (2012) Physiological variations of bloom-forming Microcystis (Cyanophyceae) related to colony size changes during blooms. Phycologia 51:599–603

    Article  CAS  Google Scholar 

  • Li H, Zhang Q, Wang XL, Ma XY, Lin KF, Liu YD, Gu JD, Lu SG, Shi L, Lu Q, Shen TT (2012a) Biodegradation of benzene homologues in contaminated sediment of the East China Sea. Bioresour Technol 124:129–136

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gao NY, Deng Y, Yao JJ, Zhang KJ (2012b) Characterization of intracellular and extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor and taste compounds. Water Res 46:1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Li M, Zhu W, Gao L, Huang JY, Li L (2013a) Seasonal variations of morphospecies composition and colony size of Microcystis in a shallow hypertrophic lake (Lake Taihu, China). Fresenius Environ Bull 22:3474–3483

    CAS  Google Scholar 

  • Li M, Zhu W, Gao L, Lu L (2013b) Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. J Appl Phycol 25:1023–1030

    Article  CAS  Google Scholar 

  • Li Q, Lin FB, Yang C, Wang JP, Lin Y, Shen MY, Park MS, Li T, Zhao JD (2018) A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming Microcystis-epibiont communities. Front Microbiol 9:746

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Maruyama T, Kato K, Yokoyama A, Tanaka T, Hiraishi A, Park HD (2003) Dynamics of microcystin-degrading bacteria in mucilage of Microcystis. Microb Ecol 46:279–288

    Article  CAS  PubMed  Google Scholar 

  • Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K (2014) Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 21:217–227

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa M, Takamura Y, Yagi O (1987) Isolation and characterization of the slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agric Biol Chem 51:329–337

    CAS  Google Scholar 

  • Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50

    Article  CAS  PubMed  Google Scholar 

  • Parveen B, Ravet V, Djediat C, Mary I, Quiblier C, Debroas D, Humbert JF (2013) Bacterial communities associated with Microcystis colonies differ from free-living communities living in the same ecosystem. Environ Microbiol Rep 5:716–724

    CAS  PubMed  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  CAS  Google Scholar 

  • Ramani A, Rein K, Shetty KG, Jayachandran K (2012) Microbial degradation of microcystin in Florida’s freshwaters. Biodegradation 23:35–45

    Article  CAS  PubMed  Google Scholar 

  • Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS (2003) Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol 11:94–100

    Article  CAS  PubMed  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen H, Niu Y, Xie P, Tao M, Yang X (2011) Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw Biol 56:1065–1080

    Article  CAS  Google Scholar 

  • Shi LM, Cai YF, Yang HL, Xing P, Li PF, Kong LD, Kong FX (2009) Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria. J Environ Sci (China) 21:1581–1590

    Article  Google Scholar 

  • Shi LM, Cai YF, Wang XY, Li PF, Yu Y, Kong FX (2010) Community structure of bacteria associated with Microcystis colonies from cyanobacterial blooms. J Freshw Ecol 25:193–203

    Article  CAS  Google Scholar 

  • Shi LM, Cai YF, Kong FX, Yu Y (2012) Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. Environ Microbiol Rep 4:669–678

    CAS  PubMed  Google Scholar 

  • Shi LM, Huang YX, Zhang M, Yu Y, Lu YP, Kong FX (2017) Bacterial community dynamics and functional variation during the long-term decomposition of cyanobacterial blooms in-vitro. Sci Total Environ 598:77–86

    Article  CAS  PubMed  Google Scholar 

  • Świątczak P, Cydzikkwiatkowska A, Rusanowska P (2017) Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Arch Environ Prot 43:53–60

    Article  Google Scholar 

  • Tang XM, Chao JY, Yi Gong, Wang YP, Wilhelm SW, Gao G (2017) Spatiotemporal dynamics of bacterial community composition in large shallow eutrophic Lake Taihu: high overlap between free-living and particle-attached assemblages. Limnol Oceanogr 62:1366–1382

    Article  CAS  Google Scholar 

  • Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang S, Mann AJ, Waldmann J, Weber M, Klindworth A, Otto A, Lange J, Bernhardt J, Reinsch C, Hecker M, Peplies J, Bockelmann FD, Callies U, Gerdts G, Wichels A, Wiltshire KH, Glockner FO, Schweder T, Amann R (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611

    Article  CAS  PubMed  Google Scholar 

  • Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258

    Article  CAS  Google Scholar 

  • Timonen S, Sinkko H, Sun H, Sietiö OM, Rinta-kanto JM, Kiheri H, Heinonsalo J (2017) Ericoid roots and mycospheres govern plant-specific bacterial communities in boreal forest humus. Microb Ecol 73:939–953

    Article  PubMed  Google Scholar 

  • Vriezen JAC, Bruijn FJD, Nüsslein K (2013) Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti. Appl Environ Microbiol 79:5693–5700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XY, Xie MJ, Wu W, Shi LM, Luo L, Li PF (2013) Differential sensitivity of colonial and unicellular Microcystis strains to an algicidal bacterium Pseudomonas aeruginosa. J Plankton Res 35:1172–1176

    Article  Google Scholar 

  • Wang ZC, Li DH, Cao XY, Song CL, Zhou YY (2014) Photosynthetic adaptation mechanism of Microcystis (Cyanophyceae) related to changes of colony size in a eutrophic lake. Phycologia 53:552–560

    Article  CAS  Google Scholar 

  • Wang WJ, Zhang YL, Shen H, Xie P, Yu J (2015) Changes in the bacterial community and extracellular compounds associated with the disaggregation of Microcystis colonies. Biochem Syst Ecol 61:62–66

    Article  CAS  Google Scholar 

  • Wang WJ, Shen H, Shi PL, Chen J, Ni LY, Xie P (2016) Experimental evidence for the role of heterotrophic bacteria in the formation of Microcystis colonies. J Appl Phycol 28:1111–1123

    Article  CAS  Google Scholar 

  • Worm J, Søndergaard M (1998) Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). Aquat Microb Ecol 14:19–28

    Article  Google Scholar 

  • Wu XD, Kong FX (2009) Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int Rev Hydrobiol 94:258–266

    Article  Google Scholar 

  • Xie ML, Ren ML, Yang C, Yi HS, Li Z, Li T, Zhao JD (2016) Metagenomic analysis reveals symbiotic relationship among bacteria in Microcystis-dominated community. Front Microbiol 7:56

    PubMed  PubMed Central  Google Scholar 

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  CAS  Google Scholar 

  • Yang HL, Cai YF, Xia M, Wang XY, Shi LM, Li PF, Kong FX (2011) Role of cell hydrophobicity on colony formation in Microcystis (Cyanobacteria). Int Rev Hydrobiol 96:141–148

    Article  CAS  Google Scholar 

  • Yang CY, Wang Q, Simon PN, Liu JY, Liu LC, Dai XZ, Zhang XH, Kuang JL, Igarashi Y, Pan XJ, Luo F (2017) Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front Microbiol 8:1202

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu GL, Song LR, Li RH (2007) Taxonomic notes on water bloom forming Microcystis species (Cyanophyta) from China-an example from samples of the Dianchi Lake. Acta Phytotaxon Sin 45:727–741

    Article  Google Scholar 

  • Yuan L, Zhu W, Xiao L, Yang L (2009) Phosphorus cycling between the colonial cyanobacterium Microcystis aeruginosa and attached bacteria, Pseudomonas. Aquat Ecol 43:859–866

    Article  CAS  Google Scholar 

  • Yuan Y, Wang SY, Liu Y, Li BK, Wang B, Peng YZ (2015) Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. Bioresour Technol 197:56–63

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Kong FX, Tan X, Yang Z, Cao HS, Xing P (2007) Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World J Microbiol Biotechnol 23:663–670

    Article  CAS  Google Scholar 

  • Zhang YZ, Wang ET, Li M, Li QQ, Zhang YM, Zhao SJ, Jia XL, Zhang LH, Chen WF, Chen WX (2011) Effects of rhizobial inoculation, cropping systems and growth stages on endophytic bacterial community of soybean roots. Plant Soil 347:147–161

    Article  CAS  Google Scholar 

  • Zhao LF, Lu L, Li M, Xu Z, Zhu W (2011) Effects of Ca and Mg levels on colony formation and EPS content of cultured M. aeruginosa. Procedia Environ Sci 10:1452–1458

    Article  CAS  Google Scholar 

  • Zhu L, Zancarini A, Louati I, De Cesare S, Duval C, Tambosco K, Bernard C, Debroas D, Song LR, Leloup J, Humbert J-F (2016) Bacterial communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Front Microbiol 7:1662

    PubMed  PubMed Central  Google Scholar 

  • Zuo N, He J, Ma X, Peng Y, Li X (2016) Phosphorus removal performance and population structure of phosphorus-accumulating organisms in HA-A/A-MCO sludge reduction process. Bioengineered 7:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 31270447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfu Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Fig. S1

Colony surface areas of M. aeruginosa, M. flos-aquae and M. wesenbergii in the exponential and stationary phase. Each point represents mean ± standard deviation (n = 3) (TIFF 1351 kb)

Fig. S2

Epifluorescence microscopy of the bacteria attached to the Microcystis colony stained with DAPI. Scale bar = 10 µm. White arrows indicate some bacterial cells (TIFF 5625 kb)

Fig. S3

Light (a) and epifluorescence (b) microscopy of an inorganic particle from the cyanobacterial culture stained with DAPI. Scale bar = 10 µm. The inorganic particle is indicated by white arrow. No fluorescence dot was observed in the epifluorescence microscopy (TIFF 1531 kb)

Fig. S4

Rarefaction curves based on OTUs (a) and Shannon index (b) for both colony-attached and free-living bacterial communities in the exponential (1) and stationary (2) cyanobacterial cultures. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii; CA, colony-attached bacteria; FL, free-living bacteria (TIFF 12,859 kb)

Fig. S5

Rarefaction curves based on OTUs (a) and Shannon index (b) for bacteria attached with Microcystis colonies of various sizes in the exponential (1) and stationary (2) cyanobacterial cultures. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii (TIFF 10,962 kb)

Fig. S6

Phylogenetic composition of Proteobacteria in colony-attached and free-living bacterial communities. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii; CA, colony-attached bacteria; FL, free-living bacteria (TIFF 6015 kb)

Fig. S7

Phylogenetic composition of Alphaproteobacteria in colony-attached and free-living bacterial communities. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii; CA, colony-attached bacteria; FL, free-living bacteria (TIFF 6079 kb)

Fig. S8

The dissimilarity between colony-attached and free-living bacteria at the OTU level based on Bray–Curtis dissimilarity index (TIFF 4526 kb)

Fig. S9

Relative abundance of the classes found in the bacterial communities attached with Microcystis colonies of various sizes. The classes at relative abundance of < 1% were included in others. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii. Microcystis colonies with size of > 100 µm, 50–100 µm and < 50 µm are represented by b, m and s, respectively (TIFF 9801 kb)

Fig. S10

The dissimilarity among bacterial communities attached with Microcystis colonies of various sizes at the OTU level based on Bray–Curtis dissimilarity index. MA, M. aeruginosa; MF, M. flos-aquae; MW, M. wesenbergii (TIFF 8735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Zhang, Y., Li, Y. et al. Comparison of community composition between Microcystis colony-attached and free-living bacteria, and among bacteria attached with Microcystis colonies of various sizes in culture. Aquat Ecol 53, 465–481 (2019). https://doi.org/10.1007/s10452-019-09702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09702-7

Keywords

Navigation