Skip to main content

Advertisement

Log in

Simulation of high-pressure sour natural gas adsorption equilibrium on NaX and NaY zeolites using the multicomponent potential theory of adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In natural gas sweetening processes, expensive technologies are usually applied, where adsorption can be a viable and economic alternative. In this sense, the usage of adsorption for natural gas sweetening depends on adsorbent potentiality. Thus, in this work, the potential usage of FAU NaX and NaY for natural gas sweetening at high-pressure (4 MPa) and ambient temperature (298 K) by adsorption processes was investigated by simulations using a validated Multicomponent Potential Theory of Adsorption coupled to Dubinin–Radushkevitch–Astakhov model (MPTA-DRA). Pure component adsorption data for H2S, CO2, CH4 and N2 show favorable isotherms on both materials and the correlation using MPTA-DRA model is in good agreement with experimental results. The simulation of multicomponent sour natural gas adsorption indicates that almost none CH4 and N2 are adsorbed in conditions studied and that CO2 and H2S compete for adsorption sites on both NaX and NaY. Partition coefficients of H2S are higher than CO2 and increase from 18.90 to 43.30, for NaX, and from 4.04 to 27.39, for NaY, as CO2 molar fraction in bulk phase decreases. The selectivity of H2S over CO2 follows a different trend, decreasing from 27.16 to 20.14 for NaX and remaining somewhat constant around 4 for NaY. These results suggest higher selectivity for NaX when a lower CO2 molar gas fraction is present. Meanwhile, for NaY, the CO2 molar fraction does not influence the H2S/CO2 selectivity. Therefore, simulations indicate that FAU NaX and NaY have good potential for natural gas sweetening at 4 MPa and 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. BPSTATS: BP Statistical Review of World Energy Statistical Review of World, 68th edition. Ed. BP Stat. Rev. World Energy. pp. 1–69 (2019)

  2. Alcheikhhamdon, Y., Hoorfar, M.: Natural gas quality enhancement: a review of the conventional treatment processes, and the industrial challenges facing emerging technologies. J. Nat. Gas Sci. Eng. 34, 689–701 (2016). https://doi.org/10.1016/j.jngse.2016.07.034

    Article  CAS  Google Scholar 

  3. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, Hoboken (2003)

    Book  Google Scholar 

  4. de Oliveira, L.H., Meneguin, J.G., Pereira, M.V., do Nascimento, J.H., Arroyo, P.A.: Adsorption of hydrogen sulfide, carbon dioxide, methane, and their mixtures on activated carbon. Chem. Eng. Commun. 206, 1544–1564 (2019). https://doi.org/10.1080/00986445.2019.1601627

    Article  CAS  Google Scholar 

  5. de Oliveira, L.H., Meneguin, J.G., Pereira, M.V., da Silva, E.A., Grava, W.M., do Nascimento, J.H., Arroyo, P.A.: H2S adsorption on NaY zeolite. Microporous Mesoporous Mater. 284, 247–257 (2019). https://doi.org/10.1016/j.micromeso.2019.04.014

    Article  CAS  Google Scholar 

  6. Pinzan, F., Braga, M.U.C., de Carvalho, E.P., Pereira, M.V., de Oliveira, L.H., do Nascimento, J.H., Arroyo, P.A.: Parametric analysis of two-dimensional equation of state used to predict high pressure CO2 and CH4 on NaY zeolite and babassu activated carbon. Fluid Phase Equilib. 539, 113031 (2021). https://doi.org/10.1016/j.fluid.2021.113031

    Article  CAS  Google Scholar 

  7. Wynnyk, K.G., Hojjati, B., Marriott, R.A.: High-pressure sour gas and water adsorption on zeolite 13X. Ind. Eng. Chem. Res. 57, 15357–15365 (2018). https://doi.org/10.1021/acs.iecr.8b03317

    Article  CAS  Google Scholar 

  8. Siriwardane, R.V., Shen, M.S., Fisher, E.P., Losch, J.: Adsorption of CO2 on zeolites at moderate temperatures. Energy Fuels 19, 1153–1159 (2005). https://doi.org/10.1021/ef040059h

    Article  CAS  Google Scholar 

  9. Karge, H.G., Raskó, J.: Hydrogen sulfide adsorption on faujasite-type zeolites with systematically varied Si-Al ratios. J. Colloid Interface Sci. 64, 522–532 (1978). https://doi.org/10.1016/0021-9797(78)90394-6

    Article  Google Scholar 

  10. Keller, J., Staudt, R.: Gas Adsorption Equilibria - Experimental Methods and Adsorptive Isotherms. Springer, New York (2005)

    Google Scholar 

  11. Suzuki, M.: Adsorption Engineering. Elsevier Science B.V, Tokyo (1991)

    Google Scholar 

  12. Walton, K.S., Sholl, D.S.: Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J. 61, 2757–2762 (2015). https://doi.org/10.1002/aic

    Article  Google Scholar 

  13. Shapiro, A.A., Stenby, E.H.: Potential theory of multicomponent adsorption. J. Colloid Interface Sci. 201, 146–157 (1998). https://doi.org/10.1006/jcis.1998.5424

    Article  CAS  Google Scholar 

  14. Bartholdy, S., Bjørner, M.G., Solbraa, E., Shapiro, A., Kontogeorgis, G.M.: Capabilities and limitations of predictive engineering theories for multicomponent adsorption. Ind. Eng. Chem. Res. 52, 11552–11563 (2013). https://doi.org/10.1021/ie400593b

    Article  CAS  Google Scholar 

  15. Dong, X., Liu, H., Guo, W., Hou, J., Chen, Z., Wu, K.: Study of the confined behavior of hydrocarbons in organic nanopores by the potential theory. Fluid Phase Equilib. 429, 214–226 (2016). https://doi.org/10.1016/j.fluid.2016.09.008

    Article  CAS  Google Scholar 

  16. Monsalvo, M.A., Shapiro, A.A.: Modeling adsorption of binary and ternary mixtures on microporous media. Fluid Phase Equilib. 254, 91–100 (2007). https://doi.org/10.1016/j.fluid.2007.02.006

    Article  CAS  Google Scholar 

  17. Monsalvo, M.A., Shapiro, A.A.: Study of high-pressure adsorption from supercritical fluids by the potential theory. Fluid Phase Equilib. 283, 56–64 (2009). https://doi.org/10.1016/j.fluid.2009.05.015

    Article  CAS  Google Scholar 

  18. Ren, W., Tian, S., Li, G., Sheng, M., Yang, R.: Modeling of mixed-gas adsorption on shale using hPC-SAFT-MPTA. Fuel 210, 535–544 (2017). https://doi.org/10.1016/j.fuel.2017.09.012

    Article  CAS  Google Scholar 

  19. Tamburello, D., Hardy, B., Sulic, M.: Multi-component separation and purification of natural gas. In: ASME 2018 Power Conference, pp. 1–8 (2018)

  20. Bjørner, M.G., Shapiro, A.A., Kontogeorgis, G.M.: Potential theory of adsorption for associating mixtures: possibilities and limitations. Ind. Eng. Chem. Res. 52, 2672–2684 (2013). https://doi.org/10.1021/ie302144t

    Article  CAS  Google Scholar 

  21. Wang, Y., Helvensteijn, B., Nizamidin, N., Erion, A.M., Steiner, L.A., Mulloth, L.M., Luna, B., Levan, M.D.: High pressure excess isotherms for adsorption of oxygen and nitrogen in zeolites. Langmuir 27, 10648–10656 (2011). https://doi.org/10.1021/la201690x

    Article  CAS  PubMed  Google Scholar 

  22. Feng, L., Shen, Y., Wu, T., Liu, B., Zhang, D., Tang, Z.: Adsorption equilibrium isotherms and thermodynamic analysis of CH4, CO2, CO, N2 and H2 on NaY Zeolite. Adsorption 26, 1101–1111 (2020). https://doi.org/10.1007/s10450-020-00205-8

    Article  CAS  Google Scholar 

  23. Nesterov, I., Shapiro, A., Kontogeorgis, G.M.: Multicomponent adsorption model for polar and associating mixtures. Ind. Eng. Chem. Res. 54, 3039–3050 (2015). https://doi.org/10.1021/acs.iecr.5b00208

    Article  CAS  Google Scholar 

  24. Shapiro, A.A., Stenby, E.H.: High pressure multicomponent adsorption in porous media. Fluid Phase Equilib. 158–160, 565–573 (1999). https://doi.org/10.1016/S0378-3812(99)00144-2

    Article  Google Scholar 

  25. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  CAS  Google Scholar 

  26. Burgers, W.F.J., Northrop, P.S., Kheshgi, H.S., Valencia, J.A.: Worldwide development potential for sour gas. Energy Procedia 4, 2178–2184 (2011). https://doi.org/10.1016/j.egypro.2011.02.104

    Article  Google Scholar 

  27. Zheng, D., Pang, X., Luo, B., Chen, D., Pang, B., Li, H., Yu, R., Guo, F., Li, W.: Geochemical characteristics, genetic types, and source of natural gas in the Sinian Dengying Formation, Sichuan Basin, China. J. Pet. Sci. Eng. 199, 108341 (2021). https://doi.org/10.1016/j.petrol.2020.108341

    Article  CAS  Google Scholar 

  28. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  29. Wynnyk, K.G., Hojjati, B., Pirzadeh, P., Marriott, R.A.: High-pressure sour gas adsorption on zeolite 4A. Adsorption 23, 149–162 (2017). https://doi.org/10.1007/s10450-016-9841-6

    Article  CAS  Google Scholar 

  30. Castrillon, M.C., Moura, K.O., Alves, C.A., Bastos-Neto, M., Azevedo, D.C.S., Hofmann, J., Möllmer, J., Einicke, W.D., Gläser, R.: CO2 and H2S removal from CH4-Rich streams by adsorption on activated carbons modified with K2CO3, NaOH, or Fe2O3. Energy Fuels 30, 9596–9604 (2016). https://doi.org/10.1021/acs.energyfuels.6b01667

    Article  CAS  Google Scholar 

  31. Olney, T.N., Cann, N.M., Cooper, G., Brion, C.E.: Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem. Phys. 223, 59–98 (1997). https://doi.org/10.1016/S0301-0104(97)00145-6

    Article  CAS  Google Scholar 

  32. Kiselev, A.V., Lopatkin, A.A., Shulga, A.A.: Molecular statistical calculation of gas adsorption by silicalite. Zeolites 5, 261–267 (1985). https://doi.org/10.1016/0144-2449(85)90098-3

    Article  CAS  Google Scholar 

  33. Meek, S.T., Teich-McGoldrick, S.L., John, J.P.I., Greathouse, J.A., Allendorf, M.D.: Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal−organic frameworks. J. Phys. Chem. C 116, 19765–19772 (2012). https://doi.org/10.1021/jp303274m

    Article  CAS  Google Scholar 

  34. Yang, J., Li, J., Wang, W., Li, L., Li, J.: Adsorption of CO2, CH4, and N2 on 8-,10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta. Ind. Eng. Chem. Res. 52, 17856–17864 (2013)

    Article  CAS  Google Scholar 

  35. Cui, X., Bustin, R.M., Dipple, G.: Selective transport of CO2, CH4, and N2 in coals: insights from modeling of experimental gas adsorption data. Fuel 83, 293–303 (2004). https://doi.org/10.1016/j.fuel.2003.09.001

    Article  CAS  Google Scholar 

  36. Sigot, L., Ducom, G., Germain, P.: Adsorption of hydrogen sulfide (H2S) on zeolite (Z): retention mechanism. Chem. Eng. J. 287, 47–53 (2016). https://doi.org/10.1016/j.cej.2015.11.010

    Article  CAS  Google Scholar 

  37. Du, X., Pang, D., Zhao, Y., Hou, Z., Wang, H., Cheng, Y.: Investigation into the adsorption of CO2, N2 and CH4 on kaolinite clay. Arab. J. Chem. 15, 103665 (2022). https://doi.org/10.1016/j.arabjc.2021.103665

    Article  CAS  Google Scholar 

  38. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, New York (2001)

    Google Scholar 

  39. Graham, C., Pierrus, J., Raab, R.E.: Measurement of the electric quadrupole moments of CO2, CO and N2. Mol. Phys. 67, 939–955 (1989). https://doi.org/10.1080/00268978900101551

    Article  CAS  Google Scholar 

  40. Sirkecioğlu, A., Altav, Y., Erdem-Şenatalar, A.: Adsorption of H2S and SO2 on Bigadiç clinoptilolite. Sep. Sci. Technol. 30, 2747–2742 (1995)

    Article  Google Scholar 

  41. Shao, W., Zhang, L., Li, L., Lee, R.L.: Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 15, 497–505 (2009). https://doi.org/10.1007/s10450-009-9200-y

    Article  CAS  Google Scholar 

  42. Pulin, A.L., Fomkin, A.A.: Thermodynamics of CO2 adsorption on zeolite NaX in wide intervals of pressures and temperatures. Russ. Chem. Bull. 53, 1630–1634 (2004). https://doi.org/10.1007/s11172-005-0008-y

    Article  CAS  Google Scholar 

  43. Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49, 1095–1101 (2004). https://doi.org/10.1021/je0498917

    Article  CAS  Google Scholar 

  44. Zhou, L., Bai, S., Su, W., Yang, J., Zhou, Y.: Comparative study of the excess versus absolute adsorption of CO2 on superactivated carbon for the near-critical region. Langmuir 19, 2683–2690 (2003). https://doi.org/10.1021/la020682z

    Article  CAS  Google Scholar 

  45. Rudzinski, W., Everett, D.H.: Adsorption of Gases on Heterogeneous Surfaces. Academic Press, London (1992)

    Google Scholar 

  46. Hutson, N.D., Yang, R.T.: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 3, 189–195 (1997). https://doi.org/10.1007/BF01650130

    Article  CAS  Google Scholar 

  47. Chakraborty, A., Sun, B.: An adsorption isotherm equation for multi-types adsorption with thermodynamic correctness. Appl. Therm. Eng. 72, 190–199 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Petrobras for the financial support (Cooperation Number 5850.0102576.16.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11071 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, M.V., de Oliveira, L.H., do Nascimento, J.F. et al. Simulation of high-pressure sour natural gas adsorption equilibrium on NaX and NaY zeolites using the multicomponent potential theory of adsorption. Adsorption 29, 65–72 (2023). https://doi.org/10.1007/s10450-022-00373-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-022-00373-9

Keywords

Navigation