Skip to main content
Log in

Performance of adsorption isotherms kernels of CO2 models for γ-alumina characterization

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

γ-alumina is the most studied metastable phase of the alumina. It is recognized as a strategic material in many industrial processes, acting as adsorbent, catalyst or support due to its high surface area, thermal and chemical stability. Its heterogeneous surface imposes a challenge for characterization by adsorption. The use of experimental adsorption data, combined with the theoretical approach of molecular simulation is becoming the standard adsorption-based technique to characterization. Therefore, this study aims to launch a first insight in the performance of the atom–atom (AA) and united-atom (UA) molecular models of the CO2, a probe gas less prone to diffusion limitations, given the lack of an appropriate kernel for the γ-alumina characterization. A detailed experimental isotherm of CO2 in γ-alumina was performed and a collection of isotherms was calculated applying Monte Carlo method in the grand canonical ensemble. To build the kernel, isotherm in 10 different slit-pore sizes were calculated. The different pore filing regimes result in a kernel with good reliability window. With these CO2 kernels (AA and AU models), reasonable pore size distributions were predicted, capturing the low range of microporosity. Additional assessment with others probes gas is recommended to confirm the feasibility of CO2 as a characterizing molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Favaro, L., Boumaza, A., Roy, P., Lédion, J., Sattonnay, G., Brubach, J.B., Huntz, A.M., Tétot, R.: Experimental and ab initio infrared study of χ-, κ- and α-aluminas formed from gibbsite. J. Solid State Chem. 183, 901–908 (2010). https://doi.org/10.1016/j.jssc.2010.02.010

    Article  CAS  Google Scholar 

  2. Figueroa-Gerstenmaier, S., Vega, L.F., Blas, F.J., Gubbins, K.E.: Molecular model of gamma-alumina. Nitrogen adsorption and pore size distribution. AIChE Symp. Ser. 97, 317–320 (2001)

    Google Scholar 

  3. Soares Maia, D.A., de Alexandre Oliveira, J.C., Nazzarro, M.S., Sapag, K.M., López, R.H., de Lucena, S.M.P., de Azevedo, D.C.S.: CO2 gas-adsorption calorimetry applied to the study of chemically activated carbons. Chem. Eng. Res. Des. 136, 753–760 (2018). https://doi.org/10.1016/j.cherd.2018.06.034

    Article  CAS  Google Scholar 

  4. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications. Academic Press, New York (2014)

    Google Scholar 

  5. Blanco, A.A.G., de Oliveira, J.C.A., López, R., Moreno-Piraján, J.C., Giraldo, L., Zgrablich, G., Sapag, K.: A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf. A 357, 74–83 (2010). https://doi.org/10.1016/j.colsurfa.2010.01.006

    Article  CAS  Google Scholar 

  6. Soares Maia, D.A., de Oliveira, J.C.A., Toso, J.P., Sapag, K., López, R.H., Azevedo, D.C.S., Cavalcante, C.L., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption (2011). https://doi.org/10.1007/s10450-011-9344-4

    Article  Google Scholar 

  7. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  8. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N<inf>2</inf> and CO<inf>2</inf>. Carbon 91, 330–337 (2015). https://doi.org/10.1016/j.carbon.2015.05.004

    Article  CAS  Google Scholar 

  9. Chen, C., Depa, P., Sakai, V.G., Maranas, J.K., Lynn, J.W., Peral, I., Copley, J.R.D.: A comparison of united atom, explicit atom, and coarse-grained simulation models for poly(ethylene oxide). J. Chem. Phys. (2006). https://doi.org/10.1063/1.2204035

    Article  PubMed  Google Scholar 

  10. Huang, B., Bartholomew, C.H., Smith, S.J., Woodfield, B.F.: Facile solvent-deficient synthesis of mesoporous γ-alumina with controlled pore structures. Microporous Mesoporous Mater. 165, 70–78 (2013). https://doi.org/10.1016/j.micromeso.2012.07.052

    Article  CAS  Google Scholar 

  11. Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995–2012 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

    Article  CAS  Google Scholar 

  12. Verwey, E.J.W.: The structure of the electrolytical oxide layer on aluminium. Z. Kristallogr. 91, 317–320 (2014). https://doi.org/10.1524/zkri.1935.91.1.317

    Article  Google Scholar 

  13. de Cascarini Torre, L.E., Flores, E.S., Llanos, J.L., Bottani, E.J.: Gas-solid potentials for N2, O2, and CO2 adsorbed on graphite, amorphous carbons, AI2O3, and TiO2. Langmuir 11, 4742–4747 (1995). https://doi.org/10.1021/la00012a027

    Article  Google Scholar 

  14. Potoff, J.J., Siepmann, J.I.: Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001). https://doi.org/10.1002/aic.690470719

    Article  CAS  Google Scholar 

  15. Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736–8742 (1999). https://doi.org/10.1021/la990726c

    Article  CAS  Google Scholar 

  16. Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte Carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in zeolite Na-4A. Energy Fuels 17, 977–983 (2003)

    Article  CAS  Google Scholar 

  17. Guimarães, A.P., Möller, A., Staudt, R., De Azevedo, D.C.S., Lucena, S.M.P., Cavalcante, C.L.: Diffusion of linear paraffins in silicalite studied by the ZLC method in the presence of CO2. Adsorption 16, 29–36 (2010). https://doi.org/10.1007/s10450-010-9205-6

    Article  CAS  Google Scholar 

  18. Jaramillo, E., Chandross, M.: Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J. Phys. Chem. C 108, 20155–20159 (2004). https://doi.org/10.1021/jp4037183

    Article  CAS  Google Scholar 

  19. Maurin, G., Llewellyn, P.L., Bell, R.G.: Adsorption mechanism of carbon dioxide in faujasites: grand canonical monte carlo simulations and microcalorimetry measurements. J. Phys. Chem. B 109, 16084–16091 (2005). https://doi.org/10.1021/jp052716s

    Article  CAS  PubMed  Google Scholar 

  20. García-Pérez, E., Parra, J.B., Ania, C.O., García-Sánchez, A., Van Baten, J.M., Krishna, R., Dubbeldam, D., Calero, S.: A computational study of CO2, N2, and CH4 adsorption in zeolites. Adsorption 13, 469–476 (2007). https://doi.org/10.1007/s10450-007-9039-z

    Article  CAS  Google Scholar 

  21. Cao, D., Wu, J.: Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide. Carbon 43, 1364–1370 (2005). https://doi.org/10.1016/j.carbon.2005.01.004

    Article  CAS  Google Scholar 

  22. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000). https://doi.org/10.1021/la991011c

    Article  CAS  Google Scholar 

  23. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016). https://doi.org/10.1080/08927022.2015.1010082

    Article  CAS  Google Scholar 

  24. Heuchel, M., Davies, G.M., Buss, E., Seaton, N.A.: adsorption of carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment. Langmuir 15, 8695–8705 (1999). https://doi.org/10.1021/la9904298

    Article  CAS  Google Scholar 

  25. Davies, G.M., Seaton, N.A.: The effect of the choice of pore model on the characterization of the internal structure of microporous carbons using pore size distributions. Carbon 36, 1473–1490 (1998). https://doi.org/10.1016/S0008-6223(98)00140-7

    Article  CAS  Google Scholar 

  26. Merz, P.H.: Determination of adsorption energy distribution by regularization and a characterization of certain adsorption isotherms. J. Comput. Phys. 38, 64–85 (1980). https://doi.org/10.1016/0021-9991(80)90012-1

    Article  CAS  Google Scholar 

  27. Szombathely, M.V., Bräuer, P., Jaroniec, M.: The solution of adsorption integral equations by means of the regularization method. J. Comput. Chem. 13, 17–32 (1992). https://doi.org/10.1002/jcc.540130104

    Article  Google Scholar 

  28. Davies, G.M., Seaton, N.A., Vassiliadis, V.S.: Calculation of pore size distributions of activated carbons from adsorption isotherms. Langmuir 15, 8235–8245 (1999). https://doi.org/10.1021/la9902643

    Article  CAS  Google Scholar 

  29. Do, D.D., Junpirom, S., Nicholson, D., Do, H.D.: Importance of molecular shape in the adsorption of nitrogen, carbon dioxide and methane on surfaces and in confined spaces. Colloids Surf. A 353, 10–29 (2010). https://doi.org/10.1016/j.colsurfa.2009.10.021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the PETROBRÁS, CAPES E CNPq for the financial support and the use of the computer cluster at National Laboratory of Scientific Computing (LNCC/MCTI, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Mardônio Pereira de Lucena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Pereira, A., Philipovsky, L., Gonçalves, R.V. et al. Performance of adsorption isotherms kernels of CO2 models for γ-alumina characterization. Adsorption 27, 1035–1042 (2021). https://doi.org/10.1007/s10450-021-00332-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00332-w

Keywords

Navigation