Synergies between adsorption and energy conversion technologies

Abstract

The analogy between heat uptake in a thermal regenerator and selective uptake of gas components in an adsorbent bed has inspired development of alternative architectures for adsorptive gas separation processes. An experimental laboratory sorption enhanced reaction approach for low pressure Haber-Bosch ammonia synthesis successfully used a Stirling engine mechanism to generate coordinated pressure swings and flow reversals of a thermally coupled PSA cycle. Attempts to apply similar mechanisms to air separation and hydrogen purification (rapid cycle PSA applications) motivated the development of very high surface area laminated parallel passage adsorbers for process intensification. Further efforts to develop compact PSA equipment for hydrogen purification and biogas upgrading led to practicable multiport rotary valves, enabling great simplification of PSA systems using multiple adsorbers. Higher degrees of simplicity and compactness for PSA and TSA processes were subsequently achieved using the laminated structured adsorbent in rotary adsorbers, now being used for post-combustion CO2 capture. Prospective applications in the energy conversion field include hydrogen recovery from SOFC anode tail gas, debottlenecking of MCFC carbon capture from flue gas, and recovery of tritium from fusion power plant breeder blanket helium purge gas. A major opportunity is identified for sorption-enhanced ammonia synthesis in the context of green hydrogen technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Sircar, S.: Applications of gas separation by adsorption for the future. Adsorpt. Sci. Eng. 19(5), 347–366 (2001)

    CAS  Article  Google Scholar 

  2. 2.

    Ruthven, D.M., Farooq, S., Knaebel, K.: Pressure Swing Adsorption. VCH Publishers, Weinheim (1994)

    Google Scholar 

  3. 3.

    Sircar, S., Golden, T.: Purification of hydrogen by pressure swing adsorption. Sep. Sci. Technol. 35(5), 667–687 (2000)

    CAS  Article  Google Scholar 

  4. 4.

    Keefer, B.: Extraction and concentration of a gas component, U.S. Patent 5082473 (1992a)

  5. 5.

    Ruthven, D.M., Thaeron, C.: Performance of a parallel passage adsorbent contactor. Gas Sep. Purif. Technol. 10(1), 67–73 (1996)

    Google Scholar 

  6. 6.

    Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley-Interscience, Hoboken (1984)

    Google Scholar 

  7. 7.

    Keefer, B.: Method and apparatus for gas separation and synthesis, U.S. Patent 4702903 (1987)

  8. 8.

    Keefer, B.: The TCPSA cycle chemical reactor applied to hydrogenation and dehydrogenation processes. In: Veziroglu, A., Protsenko, N. (eds.) Hydrogen Energy Progress VII, Proceedings of the 7th World Hydrogen Energy Conference, 25–29 September 1988, Moscow. Pergamon Press, New York (1988)

    Google Scholar 

  9. 9.

    Keller, G.E., Kuo, C.: Enhanced gas separation by selective adsorption, U.S. Patent 4354859 (1982)

  10. 10.

    Farooq, S., Thaeron, C., Ruthven, D.M.: Numerical simulation of a parallel passage dual-piston PSA unit. Gas Sep. Purif. Technol. 13, 181–193 (1998)

    CAS  Article  Google Scholar 

  11. 11.

    Keefer, B.: Adsorptive gas separator with inertial energy exchange, U.S. Patent 5096469 (1992b)

  12. 12.

    Keefer, B., Doman, D.: Flow regulated pressure swing adsorption system, U.S. Patent 6063161 (2000)

  13. 13.

    Xebec Adsorption Inc. website: https://www.xebecinc.com/hydrogen-purification/. September 2020

  14. 14.

    Keefer, B., Doman, D., McLean, C.: Modular pressure swing adsorption apparatus, U.S. Patent 7094275 (2006a)

  15. 15.

    Svante Inc. website: https://www.svanteinc.com/carbon-capture-technology/. September 2020

  16. 16.

    Rode, E., Boulet, A., Pelman, A., Babicki, M., Keefer, B., Sawada, J., Alizadeh-Khiavi, S., Roy, S., Gibbs, A., Kuznicki, S.: Engineered adsorbent structures for kinetic separation, U.S. Patent 7645324: (2010)

  17. 17.

    Keefer, B., Babicki, M.: Hydrogen recycle for solid oxide fuel cell, U.S. Patent 7387849 (2006b)

  18. 18.

    Keefer, B., Connor, D.: Chemical reactor with pressure swing adsorption, U.S. Patent 7250150 (2007)

  19. 19.

    West, C.: Liquid piston stirling engines, Chap. 10, 235–258. In: Walker, G., Senft, J. (eds.) Free Piston Stirling Engines. Springer, Berlin (1985)

    Google Scholar 

  20. 20.

    Wurzbacher, J., Gebald, C., Piatkowski, N., Steinfeld, A.: Concurrent separation of CO2 and H2O from air by a temperature-vacuum swing adsorption/desorption cycle. Environ. Sci. Technol. 46(16), 9191–9198 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    Keefer, B., Bora, B., Chew, M., Rump, M., Kveton, O.: A low inventory adsorptive process for tritium extraction and purification. In: Keen, B., Huguet, M., Hemsworth, R. (eds.) Fusion Technology 1990, vol. 2, pp. 655–659. Elsevier, Amsterdam (1991)

    Google Scholar 

  22. 22.

    Sood, S., Fong, C., Kalyanam, K., Busigin, A., Kveton, O., Ruthven, D.: A New Pressure Swing Absorption (PSA) process for recovery of tritium from the ITER solid ceramic breeder helium purge gas. Fusion Technol. 21, 299–304 (1992)

    CAS  Article  Google Scholar 

  23. 23.

    Hufton, J., Mayorga, S., Sircar, S.: Sorption enhanced reaction process for hydrogen production. AIChE J. 45(2), 248–256 (1999)

    CAS  Article  Google Scholar 

  24. 24.

    Waldron, W., Hufton, J., Sircar, S.: Production of hydrogen by cyclic adsorption enhanced reaction process. AIChE J. 47(6), 1477–1479 (2001)

    CAS  Article  Google Scholar 

  25. 25.

    van Selow, E., Cobden, P., van den Brink, R., Hufton, J., Wright, A.: Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology. Energy Procedia 1, 689–696 (2009)

    Article  Google Scholar 

  26. 26.

    Boon, J., Coenen, K., van Dijk, E., Coben, P., Gllucci, P., van Sint Annaland, M.: Chapter one: sorption enhanced water-gas shift. Adv. Chem. Eng. 51, 1–96 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    Bergschulte, A., Galladat, N., Prodot, B., Suter, R., Callini, E., Ferri, D., Arroyo, Y., Erni, R., Geerlings, H., Zuttel, A.: Sorption enhanced CO2 methanation. Phys. Chem. Chem. Phys. 15, 9620–9625 (2013)

    Article  Google Scholar 

  28. 28.

    Palys, M., McCormick, A., Cussler, E., Daoutidis, P.: Modeling and optimal design of absorbent enhanced ammonia synthesis. Processes 6, 91 (2018)

    Article  Google Scholar 

  29. 29.

    Ojha, D., Kale, M., McCormick, A., Reese, M., Malmali, M., Dauenhauer, P., Cussler, E.: Integrated ammonia synthesis and separation. ACS Sustain. Chem. Eng. 7, 18785–18792 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    Knaebel, K., Cussler, E.: A novel PSA system for ammonia synthesis. In: LeVan, M. (ed.) Fundamentals of Adsorption, pp. 457–464. Kluwer Scientific Publishers, Amsterdam (1996)

    Google Scholar 

  31. 31.

    Hansen, J.B., Hendrickson, P.: The SOC4NH3 Project. Production and use of ammonia by solid oxide cells. ECS Trans. 91, 2455–2465 (2019)

    CAS  Article  Google Scholar 

  32. 32

    Hansen, J.B.: Solid oxide electrolysis—a key enabling technology for sustainable energy scenarios. Faraday Discuss 182, 9–48 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    Hauch, A., Kungas, R., Blennow, P., Hansen, A., Hansen, J.B., Mathiesen, P., Mogensen, M.: Recent advances in solid oxide cell technology for electrolysis. Science 370, 186 (2020)

    Article  Google Scholar 

  34. 34.

    Keefer, B., Kirby, M., Rode, E., LaCava, A., Dijkstra, J.: Hydrogen recycle for high performance SOFC systems, Paper 331e. In: Topical Conference on Fuel Cell Technology, AIChE 2003 Annual Meeting, San Francisco (2003)

  35. 35.

    Keefer, B., Rode, E.: High performance SOFC power plants with enriched hydrogen anode recycle. In: Proceedings of ICEPAG 2006: 7th Annual International Colloquium on Environmentally Preferred Advanced Power Generation, Newport Beach, California (2006)

  36. 36.

    Keefer, B.: High efficiency load-following solid oxide fuel cell systems. U.S. Patent 7553568 (2009)

  37. 37.

    Ghezel-Ayagh, H.: Electrochemical membrane for carbon dioxide capture and power generation, Final Technical Report, D.O.E. Award No. DE-FE0007634. U.S. Department of Energy, Washington, D.C. (2017)

    Google Scholar 

  38. 38.

    Chiesa, P., Campanari, S., Manzolini, G.: Carbon dioxide cryogenic separation for combined cycles integrated with molten carbonate fuel cells. Int. J. Hydrogen Energy 36, 10355–10365 (2011)

    CAS  Article  Google Scholar 

  39. 39.

    Rosen, J., Geary, T., Hilmi, A., Blanco-Gutierrez, R., Yuh, C.-T., Pereira, C., Han, L., Johnson, R., Willman, C., Ghezel-Ayagh, H., Barckholtz, T.: Molten carbonate fuel cell performance for CO2 capture from natural gas combined cycle flue gas. J. Electrochem. Soc. 167, 064505 (2020)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bowie G. Keefer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keefer, B.G., Ruthven, D.M. Synergies between adsorption and energy conversion technologies. Adsorption 27, 151–166 (2021). https://doi.org/10.1007/s10450-021-00297-w

Download citation

Keywords

  • Adsorption process intensification
  • Structured adsorbents
  • Sorption-enhanced ammonia synthesis
  • Rapid cycle hydrogen PSA
  • SOFC anode tail gas recovery
  • MCFC CO2 transfer from flue gas to cathode air