Assessment of the potential use of zeolites synthesized from power plant fly ash to capture CO2 under post-combustion scenario

Abstract

Two types of zeolites (type X and type A) were synthesized from fly ash of two Brazilian coal based power plants via hydrothermal treatment after ash fusion with NaOH. The synthesized zeolites were characterized by means of XRF, XRD, SEM and gas adsorption (N2 and CO2 adsorption/desorption at − 196 and 0 °C, respectively). Pure CO2 and N2 adsorption equilibrium isotherms were performed at 50, 70 and 90 °C to measure the CO2 adsorption capacity and selectivity of CO2 over N2. CO2/N2 binary isotherms (15/85% v/v) were also obtained at the same temperatures. Commercial zeolitic materials used for CO2/N2 separation such as zeolite 13X and zeolite 4A underwent the same characterization and adsorption measurements as benchmarks to evaluate the performance of the synthesized zeolites. The synthesized materials from fly ash are promising low cost adsorbents for CO2 separation, reaching ca. 83% of the CO2 adsorption capacity of their commercial counterparts at 0.15 bar and 50 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ahmaruzzaman, M.: A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36(3), 327–363 (2010). https://doi.org/10.1016/j.pecs.2009.11.003

    CAS  Article  Google Scholar 

  2. Bae, T.-H., Hudson, M.R., Mason, J.A., Queen, W.L., Dutton, J.J., Sumida, K., et al.: Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 6(1), 128–138 (2013). https://doi.org/10.1039/c2ee23337a

    CAS  Article  Google Scholar 

  3. Belviso, C.: State-of-the-art applications of fly ash from coal and biomass: a focus on zeolite synthesis processes and issues. Prog. Energy Combust. Sci. 65, 109–135 (2018a). https://doi.org/10.1016/j.pecs.2017.10.004

    Article  Google Scholar 

  4. Belviso, C.: Ultrasonic vs hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason. Sonochem. 43, 9–14 (2018b). https://doi.org/10.1016/j.ultsonch.2017.12.050

    CAS  Article  PubMed  Google Scholar 

  5. Bhown, A.S., Freeman, B.C.: Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45(20), 8624–8632 (2011). https://doi.org/10.1021/es104291d

    CAS  Article  PubMed  Google Scholar 

  6. Brunauer, S., Emett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    CAS  Article  Google Scholar 

  7. Bukalak, D., Majchrzak-Kucęba, I., Nowak, W.: Assessment of the sorption capacity and regeneration of carbon dioxide sorbents using thermogravimetric methods. J. Therm. Anal. Calorim. 113(1), 157–160 (2013). https://doi.org/10.1007/s10973-013-3052-0

    CAS  Article  Google Scholar 

  8. Cardoso, A.M., Paprocki, A., Ferret, L.S., Azevedo, C.M.N., Pires, M.: Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 139, 59–67 (2015). https://doi.org/10.1016/j.fuel.2014.08.016

    CAS  Article  Google Scholar 

  9. de Aquino, T.F., Estevam, S.T., Viola, V.O., Marques, C.R.M., Zancan, F.L., Vasconcelos, L.B., Riella, H.G., Pires, M.J.R., Morales-Ospino, R., Torres, A.E.B., Bastos-Neto, M., Cavalcante, C.L.: CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 276, 118143 (2020). https://doi.org/10.1016/j.fuel.2020.118143

    CAS  Article  Google Scholar 

  10. Deng, L., Xu, Q., Wu, H.: Synthesis of Zeolite-like Material by Hydrothermal and Fusion Methods Using Municipal Solid Waste Fly Ash. Procedia Environ. Sci. 31, 662–667 (2016). https://doi.org/10.1016/j.proenv.2016.02.122

    CAS  Article  Google Scholar 

  11. Dindi, A., Quang, D.V., Vega, L.F., Nashef, E., Abu-Zahra, M.R.M.: Applications of fly ash for CO2 capture, utilization, and storage. J CO2 Utilization 29, 82–102 (2019). https://doi.org/10.1016/j.jcou.2018.11.011

    CAS  Article  Google Scholar 

  12. Do, D.D., Wang, K.: A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon 36(10), 1539–1554 (1998)

    CAS  Article  Google Scholar 

  13. Dreisbach, F., Seif, A.H.R., Losch, H.W.: Measuring techniques for gas-phase adsorption equilibria. Chem. Ing. Tec. 74(10), 1353–1366 (2002)

    CAS  Article  Google Scholar 

  14. Dubinin, M.M., Radushkevich, L.V.: The equation of the characteristic curve of activated charcoal. Doklady Akademii Nauk USSR Proc. Rus. Acad. Sci. 55, 327–329 (1947)

    CAS  Google Scholar 

  15. Feng, W., Wan, Z., Daniels, J., Li, Z., Xiao, G., Yu, J., et al.: Synthesis of high quality zeolites from coal fly ash: mobility of hazardous elements and environmental applications. J. Clean. Prod. 202, 390–400 (2018). https://doi.org/10.1016/j.jclepro.2018.08.140

    CAS  Article  Google Scholar 

  16. Flores, C.G., Schneider, H., Marcilio, N.R., Ferret, L., Oliveira, J.C.P.: Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture. Waste Manag 70, 263–271 (2017). https://doi.org/10.1016/j.wasman.2017.08.039

    CAS  Article  PubMed  Google Scholar 

  17. Fukasawa, T., Horigome, A., Tsu, T., Karisma, A.D., Maeda, N., Huang, A.-N., Fukui, K.: Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by hydrothermal treatment. Fuel Process. Technol. 167, 92–98 (2017). https://doi.org/10.1016/j.fuproc.2017.06.023

    CAS  Article  Google Scholar 

  18. Fukasawa, T., Horigome, A., Karisma, A.D., Maeda, N., Huang, A.-N., Fukui, K.: Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Adv. Powder Technol. 29(3), 450–456 (2018). https://doi.org/10.1016/j.apt.2017.10.022

    CAS  Article  Google Scholar 

  19. Giaccio, G.M., Malhotra, V.M.: Concrete incorporating high volumes of ASTM Class F fly ash. Cem. Concr. Aggreg. 10(2), 88–95 (1988)

    CAS  Article  Google Scholar 

  20. Gollakota, A.R.K., Volli, V., Shu, C.M.: Progressive utilisation prospects of coal fly ash: a review. Sci. Total Environ. 672, 951–989 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.337

    CAS  Article  PubMed  Google Scholar 

  21. Guttikunda, S.K., Jawahar, P.: Atmospheric emissions and pollution from the coal-fired thermal power plants in India. Atmos. Environ. 92, 449–460 (2014). https://doi.org/10.1016/j.atmosenv.2014.04.057

    CAS  Article  Google Scholar 

  22. Henmi, T.: Synthesis of hydroxy-sodalite (“Zeolite”) from waste coal ash. Soil Sci. Plant Nutr. 33(3), 517–521 (1987). https://doi.org/10.1080/00380768.1987.10557599

    CAS  Article  Google Scholar 

  23. Hosseini, T., De Girolamo, A., Zhang, L.: Energy evaluation and techno-economic analysis of low-rank coal (victorian brown coal) utilization for the production of multi-products in a drying-pyrolysis process. Energy Fuels 32(3), 3211–3224 (2018). https://doi.org/10.1021/acs.energyfuels.7b03840

    CAS  Article  Google Scholar 

  24. Iqbal, A., Sattar, H., Haider, R., Munir, S.: Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Clean. Prod. 219, 258–267 (2019). https://doi.org/10.1016/j.jclepro.2019.02.066

    CAS  Article  Google Scholar 

  25. Itskos, G., Koutsianos, A., Koukouzas, N., Vasilatos, C.: Zeolite development from fly ash and utilization in lignite mine-water treatment. Int. J. Miner. Process. 139, 43–50 (2015). https://doi.org/10.1016/j.minpro.2015.04.011

    CAS  Article  Google Scholar 

  26. Izidoro, J.D.C., Fungaro, D.A., dos Santos, F.S., Wang, S.: Characteristics of Brazilian coal fly ashes and their synthesized zeolites. Fuel Process. Technol. 97, 38–44 (2012). https://doi.org/10.1016/j.fuproc.2012.01.009

    CAS  Article  Google Scholar 

  27. Kikuchi, R.: Application of coal ash to environmental improvement: Transformation into zeolite, potassium fertilizer, and FGD absorbent. Resour. Conserv. Recycl. 27(4), 333–346 (1999). https://doi.org/10.1016/S0921-3449(99)00030-0

    Article  Google Scholar 

  28. Lee, K.-M., Jo, Y.-M.: Synthesis of zeolite from waste fly ash for adsorption of CO2. J. Mater. Cycles Waste Manage. 12(3), 212–219 (2010). https://doi.org/10.1007/s10163-010-0290-0

    CAS  Article  Google Scholar 

  29. Liang, Z., Fu, K., Idem, R., Tontiwachwuthikul, P.: Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents. Chin. J. Chem. Eng. 24(2), 278–288 (2016). https://doi.org/10.1016/j.cjche.2015.06.013

    CAS  Article  Google Scholar 

  30. Lior, N.: Sustainable energy development: the present (2009) situation and possible paths to the future. Energy 35(10), 3976–3994 (2010). https://doi.org/10.1016/j.energy.2010.03.034

    CAS  Article  Google Scholar 

  31. Liu, L., Singh, R., Xiao, P., Webley, P.A., Zhai, Y.: Zeolite synthesis from waste fly ash and its application in CO2 capture from flue gas streams. Adsorption 17(5), 795–800 (2011). https://doi.org/10.1007/s10450-011-9332-8

    CAS  Article  Google Scholar 

  32. Majchrzak-Kucęba, I., Nowak, W.: A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochim. Acta 437(1–2), 67–74 (2005). https://doi.org/10.1016/j.tca.2005.06.003

    CAS  Article  Google Scholar 

  33. Mazumder, N.A., Rano, R.: An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone. J. Ind. Eng. Chem. 29, 359–365 (2015). https://doi.org/10.1016/j.jiec.2015.04.015

    CAS  Article  Google Scholar 

  34. Mittra, B.N., Karmakar, S., Swain, D.K., Ghosh, B.C.: Fly ash—a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84(11), 1447–1451 (2005). https://doi.org/10.1016/j.fuel.2004.10.019

    CAS  Article  Google Scholar 

  35. Modak, A., Jana, S.: Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 276, 107–132 (2019). https://doi.org/10.1016/j.micromeso.2018.09.018

    CAS  Article  Google Scholar 

  36. Murayama, N., Yamamoto, H., Shibata, J.: Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int. J. Miner. Process. 64(1), 1–17 (2002). https://doi.org/10.1016/S0301-7516(01)00046-1

    CAS  Article  Google Scholar 

  37. Nalbantoğlu, Z.: Effectiveness of class C fly ash as an expansive soil stabilizer. Constr. Build. Mater. 18(6), 377–381 (2004). https://doi.org/10.1016/j.conbuildmat.2004.03.011

    Article  Google Scholar 

  38. Nie, L., Mu, Y., Jin, J., Chen, J., Mi, J.: Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas. Chin. J. Chem. Eng. 26(11), 2303–2317 (2018). https://doi.org/10.1016/j.cjche.2018.07.012

    CAS  Article  Google Scholar 

  39. Oliveira, J.A., Cunha, F.A., Ruotolo, L.A.M.: Synthesis of zeolite from sugarcane bagasse fly ash and its application as a low-cost adsorbent to remove heavy metals. J. Clean. Prod. 229, 956–963 (2019). https://doi.org/10.1016/j.jclepro.2019.05.069

    CAS  Article  Google Scholar 

  40. Pires, M., Querol, X.: Characterization of Candiota (South Brazil) coal and combustion by-product. Fuel Energy Abstr. 46(4), 210 (2005). https://doi.org/10.1016/S0140-6701(05)00050-0

    Article  Google Scholar 

  41. Prasad, B., Mondal, K.K.R.: Environmental impact of manganese due to its leaching from coal fly ash. J. Environ. Sci. Eng. 51(1), 27–32 (2009)

    CAS  PubMed  Google Scholar 

  42. Querol, X., Moreno, N., Umaña, J.C., Alastuey, A., Hernández, E., López-Soler, A., Plana, F.: Synthesis of zeolites from coal fly ash: an overview. Int. J. Coal Geol. 50(1), 413–423 (2002). https://doi.org/10.1016/S0166-5162(02)00124-6

    CAS  Article  Google Scholar 

  43. Ramírez-Franco, J.H., Galeano, L.-A., Vicente, M.-A.: Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. J. Environ. Chem. Eng. 7(5), 103274 (2019). https://doi.org/10.1016/j.jece.2019.103274

    CAS  Article  Google Scholar 

  44. Restrepo, Á., Bazzo, E., Miyake, R.: A life cycle assessment of the Brazilian coal used for electric power generation. J. Clean. Prod. 92, 179–186 (2015). https://doi.org/10.1016/j.jclepro.2014.12.065

    Article  Google Scholar 

  45. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G., Rouquerol, J., et al.: Adsorption by powders and porous solids, 2nd edn. Academic Pres, London (2014)

    Google Scholar 

  46. Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51(4), 1438–1463 (2011). https://doi.org/10.1021/ie200686q

    CAS  Article  Google Scholar 

  47. Siddique, R.: Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3), 487–493 (2004). https://doi.org/10.1016/j.cemconres.2003.09.002

    CAS  Article  Google Scholar 

  48. Sips, R.: Combined form of Langmuir and Freundlich equations. Chem. Phys. 16, 385–471 (1948)

    Google Scholar 

  49. Smith, K.R., Frumkin, H., Balakrishnan, K., Butler, C.D., Chafe, Z.A., Fairlie, I., et al.: Energy and human health. Annu. Rev. Public Health 34(1), 159–188 (2013). https://doi.org/10.1146/annurev-publhealth-031912-114404

    Article  PubMed  Google Scholar 

  50. Soe, J.T., Kim, S.-S., Lee, Y.-R., Ahn, J.-W., Ahn, W.-S.: CO2capture and Ca2+exchange using zeolite A and 13X prepared from power plant fly ash. Bull. Korean Chem. Soc. 37(4), 490–493 (2016). https://doi.org/10.1002/bkcs.10710

    CAS  Article  Google Scholar 

  51. Sua-Iam, G., Makul, N.: Utilization of coal- and biomass-fired ash in the production of self-consolidating concrete: a literature review. J. Clean. Prod. 100, 59–76 (2015). https://doi.org/10.1016/j.jclepro.2015.03.038

    CAS  Article  Google Scholar 

  52. Tauanov, Z., Shah, D., Inglezakis, V., Jamwal, P.K.: Hydrothermal synthesis of zeolite production from coal fly ash: a heuristic approach and its optimization for system identification of conversion. J. Clean. Prod. 182, 616–623 (2018). https://doi.org/10.1016/j.jclepro.2018.02.047

    CAS  Article  Google Scholar 

  53. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem (2015). https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  54. Ukwattage, N.L., Ranjith, P.G., Bouazza, M.: The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 109, 400–408 (2013). https://doi.org/10.1016/j.fuel.2013.02.016

    CAS  Article  Google Scholar 

  55. Wang, S.: Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42(19), 7055–7063 (2008). https://doi.org/10.1021/es801312m

    CAS  Article  PubMed  Google Scholar 

  56. Yang, L., Qian, X., Yuan, P., Bai, H., Miki, T., Men, F., et al.: Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J. Clean. Prod. 212, 250–260 (2019). https://doi.org/10.1016/j.jclepro.2018.11.259

    CAS  Article  Google Scholar 

  57. Zgureva, D.: Carbon dioxide adsorption studies on fly ash zeolites. Coal Combust. Gasif. Prod. 8, 54–59 (2016). https://doi.org/10.4177/CCGP-D-16-0003.1

    Article  Google Scholar 

  58. Zha, F., Liu, S., Du, Y., Cui, K.: Behavior of expansive soils stabilized with fly ash. Nat. Hazards 47(3), 509–523 (2008). https://doi.org/10.1007/s11069-008-9236-4

    Article  Google Scholar 

  59. Zhang, Z., Xiao, Y., Wang, B., Sun, Q., Liu, H.: Waste is a misplayed resource: synthesis of zeolites from fly ash for CO2 capture. Energy Procedia 114, 2537–2544 (2017). https://doi.org/10.1016/j.egypro.2017.08.036

    CAS  Article  Google Scholar 

  60. Zhu, L., Ji, J., Wang, S., Xu, C., Yang, K., Xu, M.: Removal of Pb(II) from wastewater using Al2O3-NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere 206, 278–284 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.001

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support provided by ENEVA (Brazil), P&D Aneel Res. 504/2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Celio L. Cavalcante Jr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales-Ospino, R., Goltzman, Y., Torres, A.E.B. et al. Assessment of the potential use of zeolites synthesized from power plant fly ash to capture CO2 under post-combustion scenario. Adsorption (2020). https://doi.org/10.1007/s10450-020-00245-0

Download citation

Keywords

  • CO2 capture
  • Fly ash
  • Adsorption equilibrium
  • Adsorption selectivity