Effect of acid activation on the CO2 adsorption capacity of montmorillonite

Abstract

Montmorillonite, a natural and abundant clay, was subjected to acid treatments in HCl solutions for different times to enhance its physicochemical properties for CO2 adsorption. Acid activated montmorillonites were characterized by elemental analysis, XRD, FTIR, nitrogen physisorption, TGA, and NMR to evaluate the physicochemical changes due to the acid treatment. Besides, these samples were examined as CO2 adsorbents, evaluating the influence of the modified textural characteristics on the affinity of montmorillonite towards CO2 capture. After 3 h of acid treatment, the specific surface area of clay increased from 39 to 202 m2/g, while the pore volume increased from 0.05 to 0.31 cm3/g. CO2 adsorption isotherms were carried out at 0, 15, and 30 °C, showing that acid activated clays were much more efficient for CO2 adsorption than raw materials. Further studies on the CO2 adsorption process were performed: experimental equilibrium data were correlated by using Langmuir, Freundlich, and Sips models, and the isosteric heat of adsorption was calculated from the Clausius–Clapeyron equation.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alpay, E., Ding, Y.: Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chem. Eng. Sci. 55, 3461–3474 (2000)

    Google Scholar 

  2. An, N., Zhou, C.H., Zhuang, X.Y., Tong, D.S., Yu, W.H.: Immobilization of enzymes on clay minerals for biocatalysts and biosensors. Appl. Clay Sci. 114, 283–296 (2015)

    CAS  Google Scholar 

  3. Azzouz, A., Assaad, E., Ursu, A.V., Sajin, T., Nistor, D., Roy, R.: Carbon dioxide retention over montmorillonite-dendrimer materials. Appl. Clay Sci. 48, 133–137 (2010)

    CAS  Google Scholar 

  4. Barrios, M.S., González, L.V.F., Rodríguez, M.A.V., Pozas, J.M.M.: Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Appl. Clay Sci. 10, 247–258 (1995)

    Google Scholar 

  5. Bellussi, G., Broccia, P., Carati, A., Millini, R., Pollesel, P., Rizzo, C., Tagliabue, M.: Silica-aluminas for carbon dioxide bulk removal from sour natural gas. Microporous Mesoporous Mater. 146, 134–140 (2011)

    CAS  Google Scholar 

  6. Breen, C., Madejová, J., Komadel, P.: Correlation of catalytic activity with infra-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites. Appl. Clay Sci. 10, 219–230 (1995)

    CAS  Google Scholar 

  7. Calleja, G., Sanz, R., Arencibia, A., Sanz-Pérez, E.S.: Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top. Catal. 54, 135–145 (2011)

    CAS  Google Scholar 

  8. Chang, S.C., Chien, S.Y., Chen, C.L., Chen, C.K.: Analyzing adsorption characteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation. Appl. Surf. Sci. 331, 225–233 (2015)

    CAS  Google Scholar 

  9. Chen, C., Ahn, W.S.: CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem. Eng. J. 166, 646–651 (2011)

    CAS  Google Scholar 

  10. Chen, Y., Lu, D.: CO2 capture by kaolinite and its adsorption mechanism. Appl. Clay Sci. 104, 221–228 (2015)

    CAS  Google Scholar 

  11. Chen, C., Kim, J., Yang, D.A., Ahn, W.S.: Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: structure and ion-exchange effect. Chem. Eng. J. 168, 1134–1139 (2011)

    CAS  Google Scholar 

  12. Chen, C., Park, D.W., Ahn, W.S.: Surface modification of a low cost bentonite for post-combustion CO2 capture. Appl. Surf. Sci. 283, 699–704 (2013)

    CAS  Google Scholar 

  13. Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2, 796–854 (2009)

    CAS  Google Scholar 

  14. Christidis, G.E., Scott, P.W., Dunham, A.C.: Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean. Greece. Appl. Clay Sci. 12, 329–347 (1997)

    CAS  Google Scholar 

  15. Cui, S., Cheng, W., Shen, X., Fan, M., Russell, A., Wu, Z., Yi, X.: Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy Environ. Sci. 4, 2070–2074 (2011)

    CAS  Google Scholar 

  16. Danckwerts, P.V.: The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 34, 443–446 (1979)

    CAS  Google Scholar 

  17. De Jong, S.M., Spiers, C.J., Busch, A.: Development of swelling strain in smectite clays through exposure to carbon dioxide. Int. J. Greenhouse Gas Control 24, 149–161 (2014)

    Google Scholar 

  18. Dékány, I., Turi, L., Fonseca, A., Nagy, J.B.: The structure of acid treated sepiolites: Small-angle X-ray scattering and multi MAS-NMR investigations. Appl. Clay Sci. 14, 141–160 (1999)

    Google Scholar 

  19. Drachman, S.R., Roch, G.E., Smith, M.E.: Solid state NMR characterisation of the thermal transformation of Fuller’s Earth. Solid State Nucl. Magn. Reson. 9, 257–267 (1997)

    CAS  PubMed  Google Scholar 

  20. Dutcher, B., Fan, M., Leonard, B., Dyar, M.D., Tang, J., Speicher, E.A.: Use of nanoporous FeOOH as a catalytic support for NaHCO3 decomposition aimed at reduction of energy requirement of Na2CO3/NaHCO3 based CO2 separation technology. J. Phys. Chem. 115, 15532–15544 (2011)

    CAS  Google Scholar 

  21. Elkhalifah, A.E.I., Azmi Bustam, M., Shariff, A.M., Murugesan, T.: Selective adsorption of CO2 on a regenerable amine-bentonite hybrid adsorbent. Appl. Clay Sci. 107, 213–219 (2015)

    CAS  Google Scholar 

  22. ESRL: Trends in atmospheric carbon dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed Sept 2019

  23. Favre, E.: Membrane processes and postcombustion carbon dioxide capture: challenges and prospects. Chem. Eng. J. 171, 782–793 (2011)

    CAS  Google Scholar 

  24. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D.: Advances in CO2 capture technology-The US Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con. 2, 9–20 (2008)

    CAS  Google Scholar 

  25. Foletto, E.L., Paz, D.S., Gündel, A.: Acid-activation assisted by microwave of a Brazilian bentonite and its activity in the bleaching of soybean oil. Appl. Clay Sci. 83–84, 63–67 (2013)

    Google Scholar 

  26. Franco, F., Pozo, M., Cecilia, J.A., Benítez-Guerrero, M., Pozo, E., Martín Rubí, J.A.: Microwave assisted acid treatment of sepiolite: the role of composition and “crystallinity”. Appl. Clay Sci. 102, 15–27 (2014)

    CAS  Google Scholar 

  27. Franco, F., Pozo, M., Cecilia, J.A., Benítez-Guerrero, M., Lorente, M.: Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites The influence of octahedral composition. Appl. Clay Sci. 120, 70–80 (2016)

    CAS  Google Scholar 

  28. Freundlich, H.: Kapillarchemie, eine Darstellung der Chemie der Kolloide und verwandter Gebiete. Akademische Verlagsgesellschaf, Leipzig (1909)

    Google Scholar 

  29. Frini-Srasra, N., Srasra, E.: Acid treatment of south Tunisian palygorskite: removal of Cd(II) from aqueous and phosphoric acid solutions. Desalination 250, 26–34 (2010)

    CAS  Google Scholar 

  30. Gao, W., Zhao, S., Wu, H., Deligeer, W., Asuha, S.: Direct acid activation of kaolinite and its effects on the adsorption of methylene blue. Appl. Clay Sci. 126, 98–106 (2016)

    CAS  Google Scholar 

  31. Ghoufi, A., Gaberova, L., Rouquerol, J., Vincent, D., Llewellyn, P.L., Maurin, G.: Adsorption of CO2, CH4 and their microporous and mesoporous materials binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry-manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 119, 117–128 (2009)

    CAS  Google Scholar 

  32. Gómez-Pozuelo, G., Sanz-Pérez, E.S., Arencibia, A., Pizarro, P., Sanz, R., Serrano, D.P.: CO2 adsorption on amine-functionalized clays. Microporous Mesoporous Mater. 282, 38–47 (2019)

    Google Scholar 

  33. Gonzalez, F., Pesquera, C., Benito, I.: Mechanism of acid activation of magnesic palygorskite. Clay Clay Miner. 37, 258–262 (1989)

    CAS  Google Scholar 

  34. Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silicas 3 Triamine silane grafting for enhanced CO2 adsorption. Indus. Eng. Chem. Res. 45(9), 3248–3255 (2006)

    CAS  Google Scholar 

  35. Hart, A., Gnanendran, N.: Cryogenic CO2 capture in natural gas. Energy Procedia 1, 697–706 (2009)

    CAS  Google Scholar 

  36. He, H., Guo, J., Xie, X., Lin, H., Li, L.: A microstructural study of acid-activated montmorillonite from Choushan China. Clay Miner. 3, 337–344 (2002)

    Google Scholar 

  37. Horri, N., Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Frini-Srasra, N., Srasra, E.: Amine grafting of acid-activated bentonite for carbon dioxide capture. Appl. Clay Sci. 180, 105195 (2019)

    CAS  Google Scholar 

  38. Huang, C.M., Hsu, H.W., Liu, W.H., Cheng, J.Y., Chen, W.C., Wen, T.W.: Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant. Energy Procedia 4, 1268–1275 (2011)

    CAS  Google Scholar 

  39. Irani, M., Fan, M., Ismail, H., Tuwati, A., Dutcher, B., Russell, A.G.: Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy. 11, 235–246 (2015)

    CAS  Google Scholar 

  40. Kloprogge, J.T.: Synthesis of smectites and porous pillared clay catalysts: a review. J. Porous Mater. 5, 5–41 (1998)

    CAS  Google Scholar 

  41. Komadel, P., Schmidt, D., Madejová, J., Číčel, B.: Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions. Appl. Clay Sci. 5, 113–122 (1990)

    CAS  Google Scholar 

  42. Kong, Y., Jiang, G., Fan, M., Shen, X., Cui, S., Russell, A.G.: A new aerogel based CO2 adsorbent developed using a simple sol–gel method along with supercritical drying. Chem. Commun. 50, 12158–12161 (2014)

    CAS  Google Scholar 

  43. Kooli, F., Yan, L.: Tan, Sze Xing, Zheng, Jiae: Organoclays from alkaline-treated acid-activated clays. J. Therm. Anal. Calorim. 115, 1465–1475 (2014)

    CAS  Google Scholar 

  44. Kooli, F., Liu, Y., Alshahateet, S.F., Messali, M., Bergaya, F.: Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43, 357–363 (2009)

    CAS  Google Scholar 

  45. Kooli, F., Yan, L., Tan, S.X., Zheng, J.: Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl. Clay Sci. 116–117, 23–30 (2015)

    Google Scholar 

  46. Korichi, S., Elias, A., Mefti, A.: Characterization of smectite after acid activation with microwave irradiation. Appl. Clay Sci. 42, 432–438 (2009)

    CAS  Google Scholar 

  47. Kumar, P., Jasra, R.V., Bhat, T.S.G.: Evolution of Porosity and Surface Acidity in Montmorillonite Clay on Acid Activation. Ind. Eng. Chem. Res. 1900, 1440–1448 (1995)

    Google Scholar 

  48. Langmuir, I.: The constitution and fundamental properties of solids and liquids. J Am Chem Soc 39, 1848–1906 (1916)

    Google Scholar 

  49. Leite, I.F., Soares, A.P.S., Carvalho, L.H., Raposo, C.M.O., Malta, O.M.L., Silva, S.M.L.: Characterization of pristine and purified organobentonites. J. Therm. Anal. Calorim. 100, 563–569 (2010)

    CAS  Google Scholar 

  50. Linneen, N., Pfeffer, R., Lin, Y.S.: CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine. Microporous Mesoporous Mater. 176, 123–131 (2013)

    CAS  Google Scholar 

  51. Liu, Y.: Is the Free Energy Change of Adsorption Correctly Calculated? Chem. Eng. Data. 54, 1981–1985 (2009)

    CAS  Google Scholar 

  52. Melnitchenko, A., Thompson, J.G., Volzone, C., Ortiga, J.: Selective gas adsorption by metal exchanged amorphous kaolinite derivatives. Appl. Clay Sci. 17, 35–53 (2000)

    CAS  Google Scholar 

  53. Montagnaro, F., Silvestre-Albero, A., Silvestre-Albero, J., Rodríguez-Reinoso, F., Erto, A., Lancia, A., Balsamo, M.: Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous Mesoporous Mater. 209, 157–164 (2015)

    CAS  Google Scholar 

  54. Morse, G., Jones, R., Thibault, J., Tezel, F.H.: Neural network modelling of adsorption isotherms. Adsorption 17, 303–309 (2011)

    CAS  Google Scholar 

  55. Murray, H.: Current industrial applications of clays. Clay Sci. 112, 106–112 (2006)

    Google Scholar 

  56. Nieszporek, K., Rudzinski, W.: On the enthalpic effects accompanying the mixed-gas adsorption on heterogeneous solid surfaces: a theoretical description based on the integral equation approach. Colloid Surf. A 196, 51–61 (2002)

    CAS  Google Scholar 

  57. Noyan, H., Önal, M., Sarikaya, Y.: The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite. Food Chem. 105, 156–163 (2007)

    CAS  Google Scholar 

  58. Olivares-Marín, M., Sanz-Pérez, E.S., Wong, M.S., Maroto-Valer, M.M.: Development of regenerable sorbents from abundant wastes for capture of CO2. Energy Procedia 4, 1118–1124 (2011)

    Google Scholar 

  59. Önal, M., Sarikaya, Y.: Preparation and characterization of acid-activated bentonite powders. Powder Technol. 172, 14–18 (2007)

    Google Scholar 

  60. Pera-Titus, M.: Porous inorganic membranes for CO2 capture: Present and prospects. Chem. Rev. 114, 1413–1492 (2014)

    CAS  PubMed  Google Scholar 

  61. Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., Attalla, M.: Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environ. Sci. Technol. 43, 6427–6433 (2009)

    CAS  PubMed  Google Scholar 

  62. Quiroz-Estrada, K., Hernández-Espinosa, M., Rojas, F., Portillo, R., Rubio, E., López, L.: N2 and CO2 adsorption by soils with high kaolinite content from San Juan Amecac, Puebla. México. Minerals 6, 73 (2016)

    Google Scholar 

  63. Rinker, E.B., Ashour, S.S., Orville, C.: Sandall: absorption of carbon dioxide in aqueous blends of diethanolamine and methylethanolamine. Ind. Eng. Chem. 39, 4346–4356 (2000)

    CAS  Google Scholar 

  64. Robertson, C., Mokaya, R.: Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous Mesoporous Mater. 179, 151–156 (2013)

    CAS  Google Scholar 

  65. Romanov, V.N.: Evidence of irreversible CO2 intercalation in montmorillonite. Int J Greenhouse Gas Control 14, 220–226 (2013)

    CAS  Google Scholar 

  66. Rudzinski, W., Everett, D.H.: Adsorption of Gases on Heterogeneous surfaces, pp. 24–28. Academic Press, London pp (1992)

    Google Scholar 

  67. Sanz-Pérez, E.S., Olivares-Marín, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valer, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenhous Gas Con. 17, 366–375 (2013)

    Google Scholar 

  68. Sanz-Pérez, E.S., Arencibia, A., Sanz, R., Calleja, G.: An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO2 adsorption capacity. R. Soc. Chem. 5, 103147–103154 (2015)

    Google Scholar 

  69. Sayari, A., Belmabkhout, Y., Serna-Guerrero, R.: Flue gas treatment via CO2 adsorption. Chem. Eng. J. 171, 760–774 (2011)

    CAS  Google Scholar 

  70. Shah, K.J., Imae, T., Ujihara, M., Huang, S.J., Wu, P.H., Liu, S.B.: Poly(amido amine) dendrimer-incorporated organoclays as efficient adsorbents for capture of NH3 and CO2. Chem. Eng. J. 312, 118–125 (2017)

    CAS  Google Scholar 

  71. Shao, W., Shao, W., Zhang, L., Li, L., Lee, R.L.: Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 15, 497–505 (2009)

    CAS  Google Scholar 

  72. Sing, K.: The use of nitrogen adsorption for the characterisation of porous materials. Colloid Surf. A 188, 3–9 (2001)

    Google Scholar 

  73. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    CAS  Google Scholar 

  74. Srasra, E., Trabelsi-Ayedi, M.: Textural properties of acid activated glauconite. Appl. Clay Sci. 17, 71–84 (2000)

    CAS  Google Scholar 

  75. Srasra, E., Bergaya, F., Van Damme, H., Ariguib, N.K.: Surface properties of an activated bentonite-decolorisation of rape-seed oils. Appl. Clay Sci. 4, 411–421 (1989)

    CAS  Google Scholar 

  76. Tabak, A., Afsin, B., Aygun, S.F., Koksal, E.: Structural characteristics of organo-modified bentonites of different origin. J. Therm. Anal. Calorim. 87, 377–382 (2007)

    Google Scholar 

  77. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    CAS  Google Scholar 

  78. Thoriils, C.L., Hickey, J., Stecker, G.: Chemistry of clay racking catalysts. Ind. Eng. Chem. 42, 866–871 (1950)

    Google Scholar 

  79. Tkač, I., Komadel, P., Mūller, D.: Acid - treated montmorillonites—a study by 29Si and 27Al MAS NMR. Clay Miner. 29, 11–19 (1994)

    Google Scholar 

  80. Tyagi, B., Chudasama, C.D., Jasra, R.V.: Characterization of surface acidity of an acid montmorillonite activated with hydrothermal, ultrasonic and microwave techniques. Appl. Clay Sci. 31, 16–28 (2005a)

    Google Scholar 

  81. Tyagi, B., Chudasama, C.D., Jasra, R.V.: Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim. Acta A 64, 273–278 (2005b)

    Google Scholar 

  82. Vaccari, A.: Clays and catalysis: A promising future. Appl. Clay Sci. 14, 161–198 (1999)

    CAS  Google Scholar 

  83. Veawab, A., Tontiwachwuthikul, P., Chakma, A.: Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind. Eng. Chem. Res. 38, 3917–3924 (1999)

    CAS  Google Scholar 

  84. Venaruzzo, J.L., Volzone, C., Rueda, M.L., Ortiga, J.: Modified bentonitic clay minerals as adsorbents of CO, CO2 and SO2 gases. Microporous Mesoporous Mater. 56, 73–80 (2002)

    CAS  Google Scholar 

  85. Vilarrasa-Garcia, E., Moya, E.O., Cecilia, J.A., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015)

    CAS  Google Scholar 

  86. Vilarrasa-García, E., Cecilia, J.A., Bastos-Neto, M., Cavalcante, C.L., Azevedo, D.C.S., Rodríguez-Castellón, E.: Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2 /N2 separation. Appl. Surf. Sci. 410, 315–325 (2017)

    Google Scholar 

  87. Volzone, C., Ortiga, J.: O2, CH4 and CO2 gas retentions by acid smectites. J. Mater. Sci. 5, 5291–5294 (2000)

    Google Scholar 

  88. Volzone, C., Ortiga, J.: Influence of the exchangeable cations of montmorillonite on gas adsorptions. Process Saf. Environ. 82, 170–174 (2004)

    CAS  Google Scholar 

  89. Volzone, C., Ortiga, J.: Removal of gases by thermal-acid leached kaolinitic clays: Influence of mineralogical composition. Appl. Clay Sci. 32, 87–93 (2006)

    CAS  Google Scholar 

  90. Wang, W., Xiao, J., Wei, X., Ding, J., Wang, X., Song, C.: Development of a new clay supported polyethylenimine composite for CO2 capture. Appl. Energy 113, 334–341 (2014)

    CAS  Google Scholar 

  91. Wang, Y., Zhang, P., Wen, K., Su, X., Zhu, J., He, H.: A new insight into the compositional and structural control of porous clay heterostructures from the perspective of NMR and TEM. Microporous Mesoporous Mater. 224, 285–293 (2016)

    CAS  Google Scholar 

  92. Wang, Y., Du, T., Qiu, Z., Song, Y., Che, S., Fang, X.: CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash. Mater. Chem. Phys. 207, 105–113 (2018)

    CAS  Google Scholar 

  93. Yang, X., Xu, Z., Zhang, C.: Molecular dynamics simulation of dense carbon dioxide fluid on amorphous silica surfaces. J. Colloid Interface Sci. 297, 38–44 (2006)

    CAS  PubMed  Google Scholar 

  94. Yang, S., Kim, J., Ahn, W.: CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater. 135, 90–94 (2010)

    CAS  Google Scholar 

  95. Ye, S., Jiang, X., Ruan, L.W., Liu, B., Wang, Y.M., Zhu, J.F., Qiu, L.G.: Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: adsorption, separation and regeneration investigations. Microporous Mesoporous Mater. 179, 191–197 (2013)

    CAS  Google Scholar 

  96. Zhang, B.T., Fan, M., Bland, A.E.: CO2 separation by a new solid K-Fe sorbent. Energy Fuels 25, 1919–1925 (2011)

    CAS  Google Scholar 

  97. Zhang, F., Guo, L., Ding, Y., Zhu, X., Liao, Q.: Flow pattern and CO2 absorption in a falling film reactor with mixed aqueous solution of ionic liquid and MEA. Appl. Thermal Eng. 138, 583–590 (2018)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nouha Horri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horri, N., Sanz-Pérez, E.S., Arencibia, A. et al. Effect of acid activation on the CO2 adsorption capacity of montmorillonite. Adsorption 26, 793–811 (2020). https://doi.org/10.1007/s10450-020-00200-z

Download citation

Keywords

  • Montmorillonite
  • Acid activation
  • Physicochemical properties
  • CO2 adsorption