Measurement of competitive \(\text {CO}_{2}\) and \(\text {H}_{2}\text {O}\) adsorption on zeolite 13X for post-combustion \(\text {CO}_{2}\) capture

Abstract

The adsorption isotherms of water on Zeochem zeolite 13X were measured from 22 to 100 \(^{\circ }\text {C}\) and 0 to \(2.1\times 10^{-2}\) bar using volumetry and gravimetry. The equilibrium data was fit to a dual-site Langmuir isotherm. A series of single component H2O dynamic column breakthrough experiments were measured on zeolite 13X at \( 22\,^{\circ }\text {C}\) and 0.97 bar. These breakthrough experiments were modeled and simulated with our built in-house adsorption simulator. The simulator predicted composition and thermal breakthrough behavior well for all single component experiments. Competitive \(\text {CO}_{2}\)/\(\text {H}_{2}\text {O}\) breakthrough experiments were then performed at \( 22\,^{\circ }\text {C}\) and 0.99 bar. The collected equilibrium data showed up to a 98% loading reduction for \(\text {CO}_{2}\) (compared to the single component loading) for \(\approx \) 74.4% RH while \(\text {H}_{2}\text {O}\) showed no reduction compared to its single component loading. The binary equilibrium isotherms were described by an explicit water-loading adjusted dual-site Langmuir isotherm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

b :

Adsorption equilibrium constant for site 1 (m\(^{3}\) mol\(^{-1}\))

c :

Fluid phase concentration (mol m\(^{-3}\))

\(C_\text {p}\) :

Heat capacity (J mol\(^{-1}\) K\(^{-1}\))

d :

Adsorption equilibrium constant for site 2 (m\(^{3}\) mol\(^{-1}\))

D :

Diffusivity (m\(^2\) s\(^{-1}\))

h :

Heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))

\(\Delta H\) :

Heat of adsorption (J mol\(^{-1}\))

k :

Mass transfer coefficient (s\(^{-1}\))

K :

Thermal conductivity (W m\(^{-1}\) K\(^{-1}\))

L :

Length (m)

m :

Adsorbent mass (kg)

n :

Number of species (-)

p :

Partial pressure (bar)

P :

Total pressure (bar)

q :

Solid phase loading (mol kg\(^{-1}\))

\(q^*\) :

Equilibrium solid phase loading (mol kg\(^{-1}\))

Q :

Outlet volumetric flow rate (m\(^3\) s\(^{-1}\))

r :

Radius (m)

R :

Universal gas constant (Pa m\(^{3}\) mol\(^{-1}\) K\(^{-1}\))

t :

Time (s)

\({\bar{t}}\) :

Dimensionless time (-)

T :

Temperature (K)

\(\Delta U\) :

Internal energy (J mol\(^{-1}\))

v :

Interstitial velocity (m s\(^{-1}\))

V :

Volume (m\(^{3}\))

y :

Mole fraction (-)

z :

Axial direction (m)

\(\alpha\) :

Modified DSL saturation constant (kg mol\(^{-1}\))

\(\beta\) :

Modified DSL nonlinearity constant (kg mol\(^{-1}\))

\(\epsilon\) :

Bed voidage (-)

\(\mu\) :

Viscosity (Pa s\(^{-1}\))

\(\rho\) :

Adsorbent density (kg m\(^{-3}\))

\(\tau\) :

Tortuosity (-)

a:

Adsorbed phase

acc:

Solid and fluid phase accumulation

ads:

Adsorbent or adsorption

amb:

Ambient

ave:

Average

b:

Bed or column

comp:

Component

d:

Extra-column

des:

Desorption

g:

Fluid phase

i:

Index of species

iso:

Isosteric

in:

Inlet or internal

j:

Index of species

L:

Length or low

m:

Molecular

out:

Outlet or external

p:

Particle

s:

Solid phase

sat:

Ultimate saturation

tot:

Total

w:

Wall

z:

Axial direction

0:

Initial

CCS:

Carbon capture and storage

DCB:

Dynamic column breakthrough

DSL:

Dual-site Langmuir isotherm

DOE:

Department of energy

MFC:

Mass flow controller

MFM:

Mass flow meter

MS:

Mass spectrometer

PN:

Perfect negative pairing

PP:

Perfect positive pairing

PSA:

Pressure-swing adsorption

PT:

Pressure transducer

\(\Delta\)PT:

Differential pressure transducer

RH:

Relative humidity

RHM:

Relative humidity meter

TGA:

Thermogravimetric analysis

TC:

Thermocouple

VEMC:

Virial excess mixing coefficient

VSA:

Vacuum-swing adsorption

References

  1. Ahn, H., Lee, C.: Adsorption dynamics of water in layered bed for air-drying TSA process. AIChE J. 49(6), 1601–1609 (2003)

    CAS  Article  Google Scholar 

  2. Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S.: Carbon capture and storage update. Energy Environ. Sci. 7(1), 130–189 (2014)

    CAS  Article  Google Scholar 

  3. Breck, D.W.: Zeolite Molecular Sieves, vol. 4. Wiley, New York (1974)

    Google Scholar 

  4. Bui, M., Adjiman, C.S., Bardow, A., Anthony, E.J., Boston, A., Brown, S., Fennell, P.S., Fuss, S., Galindo, A., Hackett, L.A., et al.: Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11(5), 1062–1176 (2018)

    CAS  Article  Google Scholar 

  5. Farmahini, A.H., Krishnamurthy, S., Friedrich, D., Brandani, S., Sarkisov, L.: From crystal to adsorption column: challenges in multiscale computational screening of materials for adsorption separation processes. Ind. Eng. Chem. Res. 57, 15491–15511 (2018)

    CAS  Google Scholar 

  6. Ferreira, D., Magalhães, R., Taveira, P., Mendes, A.: Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Ind. Eng. Chem. Res. 50(17), 10201–10210 (2011)

    CAS  Article  Google Scholar 

  7. Guntuka, S., Farooq, S., Rajendran, A.: A-and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008)

    CAS  Article  Google Scholar 

  8. Haghpanah, R., Majumder, A., Nilam, R., Rajendran, A., Farooq, S., Karimi, I.A., Amanullah, M.: Multiobjective optimization of a four-step adsorption process for postcombustion CO\(_{2}\) capture via finite volume simulation. Ind. Eng. Chem. Res. 52(11), 4249–4265 (2013)

    CAS  Google Scholar 

  9. Hefti, M., Mazzotti, M.: Postcombustion CO\(_{2}\) capture from wet flue gas by temperature swing adsorption. Ind. Eng. Chem. Res. 57(45), 15542–15555 (2018)

    CAS  Google Scholar 

  10. Hefti, M., Marx, D., Joss, L., Mazzotti, M.: Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater. 215, 215–228 (2015)

    CAS  Article  Google Scholar 

  11. IPCC: Special report on carbon capture and storage. Technical report, Intergovernmental Panel on Climate Change (IPCC) (2005)

  12. Joos, L., Swisher, J.A., Smit, B.: Molecular simulation study of the competitive adsorption of H\(_{2}\)O and CO\(_{2}\) in zeolite 13X. Langmuir 29(51), 15936–15942 (2013)

    CAS  Google Scholar 

  13. Kim, J., Lee, C., Kim, W., Lee, J., Kim, J., Suh, J., Lee, J.: Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite. J. Chem. Eng. Data 48(1), 137–141 (2003)

    CAS  Article  Google Scholar 

  14. Kim, H., Cho, H.J., Narayanan, S., Yang, S., Furukawa, H., Schiffres, S., Li, X., Zhang, Y., Jiang, J., Yaghi, O.M.: Characterization of adsorption enthalpy of novel water-stable zeolites and metal-organic frameworks. Sci. Rep. 6, 19097 (2016)

    CAS  Article  Google Scholar 

  15. Kim, K., Oh, H., Lim, S., Ho, K., Park, Y., Lee, C.: Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. J. Chem. Eng. Data 61(4), 1547–1554 (2016)

    CAS  Article  Google Scholar 

  16. Krishnamurthy, S., Haghpanah, R., Rajendran, A., Farooq, S.: Simulation and optimization of a dual-adsorbent, two-bed vacuum swing adsorption process for CO\(_{2}\) capture from wet flue gas. Ind. Eng. Chem. Res. 53(37), 14462–14473 (2014)

    CAS  Google Scholar 

  17. Lemmon, E. W., Huber, M. L., McLinden, M. O.: NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, version 9.1. NIST Pubs, (2013)

  18. Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R., Marshall, M.: Capture of CO\(_{2}\) from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 14(2–3), 415–422 (2008)

    CAS  Google Scholar 

  19. Lorek, A., Majewski, J.: Humidity measurement in carbon dioxide with capacitive humidity sensors at low temperature and pressure. Sensors 18(8), 2615 (2018)

    Article  Google Scholar 

  20. Purdue, M.J.: Explicit flue gas adsorption isotherm model for zeolite 13X incorporating enhancement of nitrogen loading by adsorbed carbon dioxide and multi-site affinity shielding of co-adsorbate dependent upon water vapor content. J. Phys. Chem. C 122, 11832–11847 (2018)

    CAS  Article  Google Scholar 

  21. Purdue, M.J., Qiao, Z.: Molecular simulation study of wet flue gas adsorption on zeolite 13X. Microporous Mesoporous Mater. 261, 181–197 (2018)

    CAS  Article  Google Scholar 

  22. Rajagopalan, A.K., Avila, A.M., Rajendran, A.: Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO\(_{2}\). Int. J. Greenh. Gas Control 46, 76–85 (2016)

    CAS  Google Scholar 

  23. Rezaei, F., Rownaghi, A.A., Monjezi, S., Lively, R.P., Jones, C.W.: SO\(_{{\rm x}}\)/NO\(_{{\rm x}}\) removal from flue gas streams by solid adsorbents: a review of current challenges and future directions. Energy Fuels 29(9), 5467–5486 (2015)

    CAS  Google Scholar 

  24. Ribeiro, A.M., Sauer, T.P., Grande, C.A., Moreira, R.F.P.M., Loureiro, J.M., Rodrigues, A.E.: Adsorption equilibrium and kinetics of water vapor on different adsorbents. Ind. Eng. Chem. Res. 47(18), 7019–7026 (2008)

    CAS  Article  Google Scholar 

  25. Ritter, J.A., Bhadra, S.J., Ebner, A.D.: On the use of the dual-process Langmuir model for correlating unary equilibria and predicting mixed-gas adsorption equilibria. Langmuir 27(8), 4700–4712 (2011)

    CAS  Article  Google Scholar 

  26. Ritter, J.A., Bumiller, K.C., Tynan, K.J., Ebner, A.D.: On the use of the dual process Langmuir model for binary gas mixture components that exhibit single process or linear isotherms. Adsorption 25, 1511–1523 (2019)

    CAS  Article  Google Scholar 

  27. Ryu, Y.K., Lee, S.J., Kim, J.W., Leef, C.: Adsorption equilibrium and kinetics of H\(_{2}\)O on zeolite 13X. Korean J. Chem. Eng. 18(4), 525–530 (2001)

    CAS  Google Scholar 

  28. Sircar, S., Cao, D.V.: Heat of adsorption. Chem. Eng. Technol. 25(10), 945–948 (2002)

    CAS  Article  Google Scholar 

  29. Stern, N.: The economics of climate change. Am. Econ. Rev. 98(2), 1–37 (2008)

    Article  Google Scholar 

  30. Wang, Y., LeVan, M.D.: Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. J. Chem. Eng. Data 54(10), 2839–2844 (2009)

    CAS  Article  Google Scholar 

  31. Wang, Y., LeVan, M.D.: Adsorption equilibrium of binary mixtures of carbon dioxide and water vapor on zeolites 5A and 13X. J. Chem. Eng. Data 55(9), 3189–3195 (2010)

    CAS  Article  Google Scholar 

  32. Wilkins, N.S., Rajendran, A.: Measurement of competitive \(\text{CO}_{2}\) and \(\text{ N}_{2}\) adsorption on zeolite 13X for post-combustion \(\text{ CO}_{2}\) capture. Adsorption 25(2), 115–133 (2019)

    CAS  Google Scholar 

  33. Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., Todd, R.: Capture of CO\(_{2}\) from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption. Adsorption 14(4–5), 575–582 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

Funding support from the Canada Foundation for Innovation John R. Evans Leaders Fund Project Number 33801 and Canada First Excellence Fund through University of Alberta Future Energy Systems are acknowledged. We thank Zeochem for providing samples of the zeolite 13X used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arvind Rajendran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 379 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilkins, N.S., Sawada, J.A. & Rajendran, A. Measurement of competitive \(\text {CO}_{2}\) and \(\text {H}_{2}\text {O}\) adsorption on zeolite 13X for post-combustion \(\text {CO}_{2}\) capture. Adsorption 26, 765–779 (2020). https://doi.org/10.1007/s10450-020-00199-3

Download citation

Keywords

  • Dynamic column breakthrough
  • Post-combustion
  • Carbon dioxide
  • Water
  • Zeolite 13X
  • Adsorption