Theoretical investigation of adsorption effects Ciclopirox drug over CNT(6,6-6) nanotube as factor of drug delivery: a DFT study

Abstract

The main purpose of this study is a better comprehension of the non-bonded interaction between an anticancer drug Ciclopirox and carbon nanotube [CNT(6,6-6)]. The electronic structure and adsorption properties of the molecule Ciclopirox over the surface of CNT were theoretically studied in the solvent phase at the B3LYP/6-31G* level of theory for the first time. The electronic spectra of the Ciclopirox drug, CNT(6,6-6) and complex CNT(6,6-6)/Ciclopirox in solvent water were calculated by time dependent density functional theory (TD-DFT) for the investigation of adsorption effect. The non-bonded interaction effects of the Ciclopirox drug with CNT(6,6-6) on the chemical shift tensors and natural charge have been also detected. According to the natural bond orbital (NBO) results, the molecule Ciclopirox and CNT(6,6-6) play as both electron donor and acceptor at the complex CNT(6,6-6)/Ciclopirox. On the other hand, the charge transfer is occurred between the bonding, antibonding or nonbonding orbitals in two molecules drug and CNT. As a consequence, CNT(6,6-6) can be considered as a drug delivery system for the transportation of Ciclopirox as anticancer drug within the biological systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Chandrasekhar, P.: CNT Applications in Drug and Biomolecule Delivery, Conducting Polymers, Fundamentals and Applications. Springer, New York (2018)

    Google Scholar 

  2. Digge, M.S., Moon, R.S., Gattani, S.G.: Applications of carbon nanotubes in drug delivery: a review. Int. J. Pharm. Technol. Res. 4, 839–847 (2012)

    CAS  Google Scholar 

  3. Dittmar, W., Lohaus, G.: Google Patents (1975)

  4. El Khalifi, M., Duverger, E., Boulahdour, H., Picaud, F.: Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer molecules. Anal. Methods 7, 10145–10150 (2015)

    Article  CAS  Google Scholar 

  5. Frisch, A., Nielson, A.B., Holder, A.J.: GAUSSVIEW User Manual. Gaussian Inc., Pittsburgh (2000)

    Google Scholar 

  6. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  7. Ji, S., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D., Ni, Q., Yu, X.: Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta 1806, 29–35 (2010)

    PubMed  CAS  Google Scholar 

  8. Lacerda, L., Bianco, A., Prato, M., Kostarelos, K.: Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006)

    Article  CAS  Google Scholar 

  9. Leem, S.H., Park, J.E., Kim, I.S., Chae, J.Y., Sugino, A., Sunwoo, Y.: The possible mechanism of action of Ciclopirox olamine in the yeast Saccharomyces cerevisiae. Mol. Cells 15, 55–61 (2003)

    PubMed  CAS  Google Scholar 

  10. Liu, Z., Tabakman, S., Welsher, K., Dai, H.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano. Res. 2, 85–120 (2009)

    Article  CAS  Google Scholar 

  11. Meng, L., Zhang, X., Lu, Q., Fei, Z., Dyson, P.J.: Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33, 1689–1698 (2012)

    Article  CAS  Google Scholar 

  12. Mishra, A.K.: Nanomedicine for Drug Delivery and Therapeutics. Wiley, Hoboken (2013)

    Book  Google Scholar 

  13. Niewerth, M., Kunze, D., Seibold, M., Schaller, M., Korting, H.C., Hube, B.: Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob. Agents Chemother. 47, 1805–1817 (2003)

    Article  CAS  Google Scholar 

  14. Panchapakesan, B., Lu, S., Sivakumar, K., Taker, K., Cesarone, G., Wickstrom, E.: Single-wall carbon nanotube nanobomb agents for killing breast cancer cells. NanoBiotechnology 1, 133–139 (2005)

    Article  CAS  Google Scholar 

  15. Parhi, P., Mohanty, C., Sahoo, S.K.: Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov. Today 17, 1044–1052 (2012)

    Article  CAS  Google Scholar 

  16. Peretz, S., Regev, O.: Carbon nanotubes as nanocarriers in medicine. Curr. Opin. Colloid Interface Sci. 17, 360–368 (2012)

    Article  CAS  Google Scholar 

  17. Shahab, S., Filippovich, L., Sheikhi, M., Kumar, R., Dikusar, E., Yahyaei, H., Muravsky, A.: Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct. 1141, 703–709 (2017a)

    Article  CAS  Google Scholar 

  18. Shahab, S., Sheikhi, M., Filippovich, L., Dikusar Anatol’evich, E., Yahyaei, H.: Quantum chemical modeling of new derivatives of (E, E)-azomethines: synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations. J. Mol. Struct. 1137, 335–348 (2017b)

    Article  CAS  Google Scholar 

  19. Sharma, S., Mehra, N.K., Jain, K., Jain, N.K.: Effect of functionalization on drug delivery potential of carbon nanotubes. Artif. Cells Nanomed. Biotechnol. 44, 1851–1860 (2016)

    Article  CAS  Google Scholar 

  20. Shayan, K., Nowroozi, A.: Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Appl. Surf. Sci. 428, 500–513 (2018)

    Article  CAS  Google Scholar 

  21. Sheikhi, M., Sheikh, D.: Quantum chemical investigations on phenyl-7,8- dihydro-[1,3]-dioxolo[4,5-g] quinolin-6(5 h)-one. Rev. Roum. Chim. 59, 761–767 (2014)

    Google Scholar 

  22. Sheikhi, M., Balali, E., Lari, H.: Theoretical investigations on molecular structure, NBO, HOMO–LUMO and MEP analysis of two crystal structures of N-(2-benzoyl-phenyl) oxalyl: a DFT study. J. Phys. Theor. Chem. 13, 155–171 (2016)

    Google Scholar 

  23. Sheikhi, M., Shahab, S., Khaleghian, M., Kumar, R.: Interaction between new anti-cancer drug syndros and CNT(6,6-6) nanotube for medical applications: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO–LUMO investigation. Appl. Surf. Sci. 434, 504–513 (2018a)

    Article  CAS  Google Scholar 

  24. Sheikhi, M., Shahab, S., Khaleghian, M., Haji Hajikolaee, F., Balakhanava, I., Alnajjar, R.: Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited State), FMO, MEP and HOMO–LUMO investigations. J. Mol. Struct. 1160, 479–487 (2018b)

    Article  CAS  Google Scholar 

  25. Sheikhi, M., Shahab, S., Filippovich, L., Yahyaei, H., Dikusar, E., Khaleghian, M.: New derivatives of (E, E)-azomethines: design, quantum chemical modeling, spectroscopic (FT-IR, UV/Vis, polarization) studies, synthesis and their applications: experimental and theoretical investigations. J. Mol. Struct. 1152, 368–385 (2018c)

    Article  CAS  Google Scholar 

  26. Sheikhi, M., Shahab, S., Alnajjar, R., Ahmadianarog, M.: Adsorption properties of the new anti-cancer drug alectinib on CNT(6,6-6) nanotube: geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO–LUMO investigations. J. Clust. Sci. 30, 83–96 (2019)

    Article  CAS  Google Scholar 

  27. Tripisciano, C., Kraemer, K., Taylor, A., Borowiak-Palen, E.: Single-wall carbon nanotubes based anticancer drug delivery system. Chem. Phys. Lett. 478, 200–205 (2009)

    Article  CAS  Google Scholar 

  28. Vashist, S.K., Zheng, D., Pastorin, G., Al-Rubeaan, K., Luong, J.H.T., Sheu, F.: Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49, 4077–4097 (2011)

    Article  CAS  Google Scholar 

  29. Wang, Y., Xu, Z.: Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing. RSC Adv. 6, 314–322 (2016)

    Article  CAS  Google Scholar 

  30. Weinhold, F., Landis, C.R.: Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2(2), 91–104 (2001)

    Article  CAS  Google Scholar 

  31. Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H.: Nanoparticles as drug delivery systems. Pharmacol. Rep. 64, 1020–1037 (2012)

    Article  CAS  Google Scholar 

  32. Xu, H., Li, L., Fan, G., Chu, X.: DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 1131, 57–68 (2018)

    Article  CAS  Google Scholar 

  33. Zhang, W., Zhang, Z., Zhang, Y.: The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res. Lett. 6, 1–22 (2011)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Siyamak Shahab or Masoome Sheikhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shahab, S., Sheikhi, M., Alnajjar, R. et al. Theoretical investigation of adsorption effects Ciclopirox drug over CNT(6,6-6) nanotube as factor of drug delivery: a DFT study. Adsorption 26, 913–924 (2020). https://doi.org/10.1007/s10450-019-00182-7

Download citation

Keywords

  • Ciclopirox
  • CNT(6,6-6)
  • DFT
  • Charge transfer