A facile approach to the fabrication of MgO@Y composite for CO2 capture

Abstract

Zeolite Y supported MgO (denoted as MgO@Y) composites have been successfully prepared using Mg(NO3)2 as precursor via a facile solid-state heat dispersion approach. The samples are characterized by X-ray diffraction and N2 adsorption/desorption, and investigated for CO2 adsorption performance including adsorption capacity, adsorption selectivity and stability. The results reveal that MgO can be highly dispersed on the surfaces of zeolite Y support after the activation at high temperatures, and the monolayer dispersion capacity of MgO on zeolite Y support is 3 mmol/g zeolite Y. The resulting MgO(3.0)@Y adsorbent with the magnesium loadings of 3 mmol/g zeolite Y displays a high CO2 adsorption capacity of 2.78 mmol/g at 500 kPa, which is about 28% higher than that of zeolite Y support. Moreover, the MgO(3.0)@Y adsorbent displays a high CO2/N2 adsorption selectivity of 32 and a excellent cyclic stability. Its good performance as well as its facile preparation process make it attractive candidate for the adsorption of CO2 in flue gas vents. In addition, the isosteric heat of CO2 adsorption on the MgO(3.0)@Y sample was calculated from the Clausius–Clapeyron equation, and the values the isosteric heats of adsorption lie in the range of 27.8–20.0 kJ/mol.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akten, E.D., Siriwardane, R., Sholl, D.S.: Monte carlo simulation of single- and binary-component adsorption of CO2, N2, and H2 in Zeolite Na-4A. Energ. Fuel. 17, 977–983 (2003)

    CAS  Google Scholar 

  2. Avijegon, G., Xiao, G., Li, G., May, E.F.: Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13 × beads from 273 to 333 K and pressures to 900 kPa. Adsorption 24(4), 381–392 (2018)

    CAS  Google Scholar 

  3. Bahamon, D., Vega, L.F.: Systematic evaluation of materials for post-combustion CO2 capture in a temperature swing adsorption process. Chem. Eng. J. 284, 438–447 (2016)

    CAS  Google Scholar 

  4. Belmabkhout, Y., Sayari, A.: Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci. 64, 3729–3735 (2009)

    CAS  Google Scholar 

  5. Billemont, P., Heymans, N., Normand, P., Weireld, G.D.: IAST predictions vs co-adsorption measurements for CO2 capture and separation on MIL-100 (Fe). Adsorption 23(2–3), 225–237 (2017)

    CAS  Google Scholar 

  6. Carruthers, J.D., Petruska, M.A., Sturm, E.A., Wilson, S.M.: Molecular sieve carbons for CO2 capture. Microporous Mesoporous Mater. 154, 62–67 (2012)

    Google Scholar 

  7. Chen, Y., Xie, C., Li, Y., Song, C., Bolin, T.B.: Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study. Phys. Chem. Chem. Phys. 12(21), 5707–5711 (2010)

    CAS  PubMed  Google Scholar 

  8. Chen, C., Kim, J., Ahn, W.S.: CO2 capture by amine-functionalized nanoporous materials: a review. Korean J. Chem. Eng. 31(11), 1919–1934 (2014)

    CAS  Google Scholar 

  9. Choma, J., Stachurska, K., Marszewski, M., Jaroniec, M.: Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption 22(4), 581–588 (2016)

    CAS  Google Scholar 

  10. Chu, S.: Carbon capture and sequestration. Science 325(5948), 1599 (2009)

    CAS  PubMed  Google Scholar 

  11. Dietzel, P.D.C., Besikiotis, V., Blom, R.: Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 19, 7362–7370 (2009)

    CAS  Google Scholar 

  12. Dong, W., Chen, X., Yu, F., Wu, Y.: Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture. Energy Fuel. 29(2), 968–973 (2015)

    CAS  Google Scholar 

  13. Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H.: Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Con. 2(1), 9–20 (2008)

    CAS  Google Scholar 

  14. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)

    CAS  Google Scholar 

  15. Gao, F., Wang, Y., Wang, X., Wang, S.: Selective CO adsorbent CuCl/AC prepared using CuCl2 as a precursor by a facile method. RSC Adv. 6(41), 34439–34446 (2016a)

    CAS  Google Scholar 

  16. Gao, F., Wang, Y., Wang, S.: Selective adsorption of CO on CuCl/Y adsorbent prepared using CuCl2 as precursor: equilibrium and thermodynamics. Chem. Eng. J. 290, 418–427 (2016b)

    CAS  Google Scholar 

  17. Gao, F., Wang, Y., Wang, X., Wang, S.: Ethylene/ethane separation by Cu/AC adsorbent prepared using CuCl2 as a precursor. Adsorption 22(7), 1013–1022 (2016c)

    CAS  Google Scholar 

  18. Han, S.J., Bang, Y., Lee, H., Lee, K., Song, I.K., Seo, J.G.: Synthesis of a dual-templated MgO-Al2O3 adsorbent using block copolymer and ionic liquid for CO2 capture. Chem. Eng. J. 270, 411–417 (2015)

    CAS  Google Scholar 

  19. Hasana, M.M.F., First, E.L., Boukouvala, F., Flouda, C.A.: A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU. Comput. Chem. Eng. 81, 2–21 (2015)

    Google Scholar 

  20. Hefti, M., Marx, D., Joss, L., Mazzotti, M.: Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater. 215, 215–222 (2015)

    CAS  Google Scholar 

  21. Herm, Z.R., Swisher, J.A., Smit, B., Krishna, R., Long, J.R.: Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J. Am. Chem. Soc. 133, 5664–5667 (2011)

    CAS  PubMed  Google Scholar 

  22. Hiremath, V., Shavi, R., Seo, J.G.: Controlled oxidation state of Ti in MgO-TiO2 composite for CO2 capture. Chem. Eng. J. 308, 177–183 (2017)

    CAS  Google Scholar 

  23. Huang, Y., Tao, Y., He, L., Duan, Y., Xiao, J., Li, Z.: Preparation of CuCl@AC with high CO adsorption capacity and selectivity from CO/N2 binary mixture. Adsorption 21(5), 373–381 (2015)

    CAS  Google Scholar 

  24. Iruretagoyena, D., Huang, X., Shaffer, M.S.P., Chadwick, D.: Influence of alkali metals (Na, K, and Cs) on CO2 adsorption by layered double oxides supported on graphene oxide. Ind. Eng. Chem. Res. 54(46), 11610–11618 (2015)

    CAS  Google Scholar 

  25. Jiao, X., Li, L., Zhao, N., Xiao, F., Wei, W.: Synthesis and low-temperature CO2 capture properties of a novel Mg-Zr solid sorbent. Energy Fuel. 27(9), 5407–5415 (2013)

    CAS  Google Scholar 

  26. Kapoor, A., Ritter, J.A., Yang, R.T.: An extended langmuir model for adsorption of gas mixtures on heterogeneous surfaces. Langmuir 6(3), 660–664 (1990)

    CAS  Google Scholar 

  27. Koerner, B., Klopatek, J.: Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ. Pollut. 116, S45–S51 (2002)

    CAS  PubMed  Google Scholar 

  28. Kodasma, R., Fermoso, J., Sanna, A.: Li-LSX-zeolite evaluation for post-combustion CO2 capture. Chem. Eng. J. 358, 1351–1362 (2019)

    CAS  Google Scholar 

  29. Kim, K., Han, J.W., Lee, K.S., Lee, W.B.: Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations. Phys. Chem. Chem. Phys: PCCP 16(45), 24818–24823 (2014)

    CAS  PubMed  Google Scholar 

  30. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    CAS  Google Scholar 

  31. Lee, S.Y., Park, S.J.: A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 23, 1–11 (2015)

    Google Scholar 

  32. Li, P., Tezel, F.H.: Pure and binary adsorption equilibria of carbon dioxide and nitrogen on silicalite. J. Chem. Eng. Data 53, 2479–2487 (2008)

    CAS  Google Scholar 

  33. Li, B., Duan, Y., Luebke, D., Morreale, B.: Advances in CO2 capture technology: a patent review. Appl. Energy 102, 1439–1447 (2013a)

    CAS  Google Scholar 

  34. Li, Y.Y., Han, K.K., Lin, W.G., Wan, M.M., Wang, Y., Zhu, J.H.: Fabrication of a new MgO/C sorbent for CO2 capture at elevated temperature. J. Mater. Chem. A 1(41), 12919–12925 (2013b)

    CAS  Google Scholar 

  35. Li, D., Tian, Y., Li, L., Li, J., Zhang, H.: Production of highly microporous carbons with large CO2 uptakes at atmospheric pressure by KOH activation of peanut shell char. J. Porous Mater. 22, 1581–1588 (2015)

    CAS  Google Scholar 

  36. Lin, Y., Yan, Q., Kong, C., Chen, L.: Polyethyleneimine incorporated metal-Organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859–1865 (2013)

    PubMed  PubMed Central  Google Scholar 

  37. Ling, Z., Liu, J., Wang, Q., Lin, W., Fang, X., Zhang, Z.: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Sol. Energy Mater. Sol. C 172, 195–201 (2017)

    CAS  Google Scholar 

  38. Liu, S., Zhang, X., Li, J., Zhao, N., Wei, W., Sun, Y.: Preparation and application of stabilized mesoporous MgO-ZrO2 solid base. Catal. Commun. 9(7), 1527–1532 (2008)

    CAS  Google Scholar 

  39. Luebke, R., Eubank, J.F., Cairns, A.J., Belmabkhout, Y., Wojtas, L., Eddaoudi, M.: The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. Chem. Commun. 48, 1455–1457 (2012)

    CAS  Google Scholar 

  40. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    CAS  Google Scholar 

  41. Nikolaidis, G.N., Kikkinides, E.S., Georgiadis, M.C.: A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO2 capture using P/VSA processes. Chem. Eng. Res. Des. 131, 362–374 (2018)

    CAS  Google Scholar 

  42. Olajire, A.A.: CO2 capture and separation technologies for end-of-pipe applications: a review. Energy 35(6), 2610–2628 (2010)

    CAS  Google Scholar 

  43. Pires, J., de Carvalho, M.B., Ramoa Ribeiro, F., Derouane, E.G.: Carbon dioxide in Y and ZSM-20 zeolites: adsorption and infrared studies. J. Mol. Catal. 85, 295–303 (1993)

    CAS  Google Scholar 

  44. Ramli, N.A.S., Amin, N.A.S.: Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: characterization and catalytic performance. Appl. Catal. B 163, 487–498 (2015)

    CAS  Google Scholar 

  45. Rao, M.B., Sirca, S.: Thermodynamic consistency for binary gas adsorption equilibria. Langmuir 15, 7258–7267 (1999)

    CAS  Google Scholar 

  46. Rao, A.B., Rubin, E.S.: A technical, economic and environmental assessment of amine based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36(20), 4467–4475 (2002)

    CAS  PubMed  Google Scholar 

  47. Razavi, S.S., Hashemianzadeh, S.M., Karimi, H.: Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N2 mixtures. J. Mol. Model. 17, 1163–1172 (2011)

    CAS  PubMed  Google Scholar 

  48. Regufe, M.J., Ferreira, A.F.P., Loureiro, J.M., Shi, Y., Rodrigues, A., Ribeiro, A.M.: New hybrid composite honeycomb monolith with 13 × zeolite and activated carbon for CO2 capture. Adsorption 24(3), 249–265 (2018)

    CAS  Google Scholar 

  49. Rocha, L.A.M., Anne Andreassen, K., Grande, C.A.: Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure. Chem. Eng. Sci. 164, 148–157 (2017)

    CAS  Google Scholar 

  50. Sevilla, M., Fuertes, A.B.: Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 4, 1765–1771 (2011)

    CAS  Google Scholar 

  51. Shahkarami, S., Dalai, A.K., Soltan, J.: Enhanced CO2 adsorption using MgO-impregnated activated carbon: Impact of preparation techniques. Ind. Eng. Chem. Res. 55(20), 5955–5956 (2016)

    CAS  Google Scholar 

  52. Shao, W., Zhang, L., Li, L., Lee, R.L.: Adsorption of CO2 and N2 on synthesized NaY zeolite at high temperatures. Adsorption 15, 497–505 (2009)

    CAS  Google Scholar 

  53. Sips, R.: On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    CAS  Google Scholar 

  54. Song, G., Zhu, X., Chen, R., Liao, Q., Ding, Y.D., Chen, L.: An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 283, 175–183 (2016)

    CAS  Google Scholar 

  55. Song, C., Liu, Q., Deng, S., Li, H., Kitamura, Y.: Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges. Renew. Sust. Energ. Rev. 101, 265–278 (2019)

    CAS  Google Scholar 

  56. Toth, J.: State equations of the solid gas interface layer. Acta Chem. Acad. Hung. 69, 311–317 (1971)

    CAS  Google Scholar 

  57. Wang, Q., Luo, J.Z., Zhou, Z.Y., Borgna, A.: CO2 capture by solid adsorbents and their applications: current status and new trends. Energ. Environ. Sci. 4(1), 42–55 (2011)

    CAS  Google Scholar 

  58. Wang, C., Li, L., Tang, S., Zhao, X.: Enhanced uptake and selectivity of CO2 Adsorption in a hydrostable metal-organic frameworks via incorporating methylol and methyl groups. ACS Appl. Mater. Interfaces 6, 16932–16940 (2014)

    CAS  PubMed  Google Scholar 

  59. Wilkins, N.S., Rajendran, A.: Measurement of competitive CO2 and N2 adsorption on Zeolite 13X for post-combustion CO2 capture. Adsorption 25, 115–133 (2019)

    CAS  Google Scholar 

  60. Wu, Y., Lv, Z., Zhou, X., Peng, J., Tang, Y., Li, Z.: Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chem. Eng. J. 355, 815–821 (2019)

    CAS  Google Scholar 

  61. Xiang, S., He, Y., Zhang, Z., Wu, H., Zhou, W., Krishna, R., Chen, B.: Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 3, 954–962 (2012)

    PubMed  Google Scholar 

  62. Yang, S.T., Kim, J., Ahn, W.S.: CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater. 135(1–3), 90–94 (2010)

    CAS  Google Scholar 

  63. Zhao, B., Ma, L., Shi, H., Liu, K., Zhang, J.: Calcium precursor from stirring processes at room temperature for controllable preparation of nano-structure CaO sorbents for high temperature CO2 adsorption. J. CO2 Util. 25, 315–322 (2018)

    CAS  Google Scholar 

  64. Zukal, A., Pastva, J., Čejka, J.: MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous Mesoporous Mater. 167, 44–50 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Natural Science Foundation of Shandong Province (No. ZR2018BB071).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weiwen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Wang, S., Chen, G. et al. A facile approach to the fabrication of MgO@Y composite for CO2 capture. Adsorption 26, 701–709 (2020). https://doi.org/10.1007/s10450-019-00147-w

Download citation

Keywords

  • MgO@Y adsorbent
  • CO2
  • Solid-state heat dispersion
  • Selectivity
  • Stability