, Volume 24, Issue 4, pp 345–355 | Cite as

Confinement effect on enthalpy of fusion and melting point of organic phase change materials in cylindrical nanospace of mesoporous silica and carbon

  • Jihye Choi
  • Hirotaka Fujita
  • Masaru Ogura
  • Akiyoshi Sakoda


Organic phase change materials (PCMs) were successfully confined into mesopores of host materials independently via vapor transportation to precisely investigate the changes in the enthalpy of fusion and the melting point of such confined PCMs under various conditions. Paraffins, fatty acids, and fatty alcohols with long hydrocarbon chains were employed as guest PCMs. Mesoporous silica SBA-15s and soft-templated mesoporous carbons with cylindrical mesopores were employed as host materials of the guest PCMs. It was elucidated that mesopore diameter, functional groups of both PCMs and functional groups of host materials result in significant changes in the enthalpy of fusion and the melting point of confined PCMs. Furthermore, it was concluded that the host materials with mesopores of diameter 10–20 nm and minimum interaction between PCM molecules and the functional group on the wall of mesopores of host materials are required to obtain an enthalpy of fusion of confined PCMs as much as 50% of that in its bulk phase.


Confinement effect Phase change material Enthalpy of fusion Melting point 



The authors would like to express sincere gratitude to Professor Ryo Shirakashi and research associate Kiyoshi Takano, IIS, the University of Tokyo, for their support in the experimental section of the DSC measurement.


  1. Aihara, M., Nagai, T., Matsushita, J., Negishi, Y., Ohya, H.: Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction. Appl. Energy 69, 225–238 (2001)CrossRefGoogle Scholar
  2. Boehm, H.P., Diehl, E., Heck, W., Sappok, R.: Surface oxides of carbon. Angew. Chem. Int. Ed. 3, 669–677 (1964)CrossRefGoogle Scholar
  3. Christenson, H.K.: Confinement effects on freezing and melting. J. Phys. Condens. Matter 13, R95–R133 (2001)CrossRefGoogle Scholar
  4. Churaev, N.V., Bardasov, S.A., Sobolev, V.D.: On the non-freezing and a silica surface water interlayers between ice and a silica surface. Colloids Surf. A 79, 11–24 (1993)CrossRefGoogle Scholar
  5. Dincer, I., Dost, S., Li, X.: Performance analyses of sensible heat storage. Int. J. Energy Res. 21, 1157–1171 (1997)CrossRefGoogle Scholar
  6. Farid, M.M., Khudhair, A.M., Razack, S.A.K., Al-Hallaj, S.: A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45, 1597–1615 (2004)CrossRefGoogle Scholar
  7. Feng, L., Zhao, W., Zheng, J., Frisco, S., Song, P., Li, X.: The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41). Sol. Energy Mater. Sol. Cells 95, 3550–3556 (2011)CrossRefGoogle Scholar
  8. Horstmeier, J.F., Gomez Lopez, A., Agar, D.W.: Performance improvement of vacuum swing adsorption processes for CO2 removal with integrated phase change material. Int. J. Greenh. Gas Control 47, 364–375 (2016)CrossRefGoogle Scholar
  9. Jackson, C.L., Mckenna, G.B.: The melting behavior of organic materials confined in porous solids. J. Chem. Phys. 93, 9002 (1990)CrossRefGoogle Scholar
  10. Kadoono, T., Ogura, M.: Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3. Phys. Chem. Chem. Phys. 16, 5495–5498 (2014)CrossRefPubMedGoogle Scholar
  11. Kittaka, S., Takahara, S., Matsumoto, H., Wada, Y.: Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study. J. Chem. Phys. 138, 204714 (2013)CrossRefPubMedGoogle Scholar
  12. Kruk, M.: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates. Acc. Chem. Res. 45, 1678–1687 (2012)CrossRefPubMedGoogle Scholar
  13. Li, X., Li, Y.: Applications of organic phase change materials embedded in adsorbents for controlling heat produced by charging and discharging natural gas. Adsorption 21, 383–389 (2015)CrossRefGoogle Scholar
  14. Libbrecht, W., Deruyck, F., Poelman, H., Verberckmoes, A., Thybaut, J., De Clercq, J., Van, P., Voort, D.: Optimization of soft templated mesoporous carbon synthesis using definitive screening design. Chem. Eng. J. 259, 126–134(2015)CrossRefGoogle Scholar
  15. Min, X., Fang, M., Huang, Z., Liu, Y., Huang, Y., Wen, R., Qian, T., Wu, X.: Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci. Rep. 5, 12964 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mitran, R.A., Berger, D., Munteanu, C., Matei, C.: Evaluation of different mesoporous silica supports for energy storage in shape-stabilized phase change materials with dual thermal responses. J. Phys. Chem. C 119, 15177–15184 (2015)CrossRefGoogle Scholar
  17. Miyahara, M., Gubbins, K.E.: Freezing/melting phenomena for Lennard-Jones methane in slit pores: a Monte Carlo study. J. Chem. Phys. 106, 2865 (1997)CrossRefGoogle Scholar
  18. Mondal, S.: Phase change materials for smart textiles—an overview. Appl. Therm. Eng. 28, 1536–1550 (2008)CrossRefGoogle Scholar
  19. Morishige, K., Iwasaki, H.: X-ray study of freezing and melting of water confined within SBA-15. Langmuir 19, 2808–2811 (2003)CrossRefGoogle Scholar
  20. Morishige, K., Kawano, K., Hayashigi, T.: Adsorption isotherm and freezing of Kr in a single cylindrical pore. J. Phys. Chem. B. 104, 10298–10303 (2000)CrossRefGoogle Scholar
  21. Nomura, T., Zhu, C., Sheng, N., Tabuchi, K., Sagara, A.: Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2. Sol. Energy Mater. Sol. Cells 143, 424–429 (2015)CrossRefGoogle Scholar
  22. Sari, A.: Form-stable paraffin/high density polyethylene composites as solid-liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Convers. Manag. 45, 2033–2042 (2004)CrossRefGoogle Scholar
  23. Sari, A., Alkan, C., Bilgin, C.: Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl. Energy 136, 217–227 (2014)CrossRefGoogle Scholar
  24. Scheibe, B., Borowiak-palen, E., Kalenczuk, R.J.: Oxidation and reduction of multiwalled carbon nanotubes—preparation and characterization. Mater. Charact. 61, 185–191 (2009)CrossRefGoogle Scholar
  25. Schreiber, A., Ketelsen, I., Findenegg, G.H.: Melting and freezing of water in ordered mesoporous silica materials. Phys. Chem. Chem. Phys. 3, 1185–1195 (2001)CrossRefGoogle Scholar
  26. Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T.: Capillary condensation in mesoporous silica with surface roughness. Adsorption 19, 631–641 (2013)CrossRefGoogle Scholar
  27. Valange, S., Palacio, R., Charmot, A., Barrault, J., Louati, A., Gabelica, Z.: Nanoparticles of Fe2O3 inserted in SBA-15 silica at micropore mouth level: an experimental evidence of the confinement effect. J. Mol. Catal. A 305, 24–33 (2009)CrossRefGoogle Scholar
  28. Wang, J., Yang, M., Lu, Y., Jin, Z., Tan, L., Gao, H., Fan, S., Dong, W., Wang, G.: Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials. Nano Energy 19, 78–87 (2016)CrossRefGoogle Scholar
  29. Zeng, J.L., Cao, Z., Yang, D.W., Xu, F., Sun, L.X., Zhang, L., Zhang, X.F.: Phase diagam of palmitic acid-tetradecanol mixtures obtained by DSC experiments. J. Therm. Anal. Calorim. 95, 501–505 (2009)CrossRefGoogle Scholar
  30. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefPubMedGoogle Scholar
  31. Zhou, D., Zhao, C.Y., Tian, Y.: Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593–605 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jihye Choi
    • 1
  • Hirotaka Fujita
    • 1
  • Masaru Ogura
    • 1
  • Akiyoshi Sakoda
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations