, Volume 24, Issue 4, pp 371–379 | Cite as

Enhanced \(\text {CO}_2\) selectivity within the cavity of gmelinite frameworks

  • Anastasios Gotzias
  • Michael Kainourgiakis
  • Athanassios Stubos


We simulate the adsorption of \(\text {CO}_2\) mixtures in three zeolitic imidazolate frameworks, namely ZIF70, ZIF80 and ZIF82. The structures display a dual pore composition with a network topology that resembles the cavity of the gmelinite zeolite. We compute the adsorption density in the pore partitions of the cavities by allocating the particle distributions of the mixture components at the individual regions of the pore network. We detect that the \(\text {CO}_2\) adsorption and the selectivity performance, are enhanced in one group of pore channels. For ternary mixtures adsorption simulations, within the hexahedral pore channels of ZIF82, we evaluate \(\simeq 14\) for \(\text {CO}_2\)/\(\text {CH}_4\) and \(\simeq 34\) for \(\text {CO}_2\)/\(\text {N}_2\) selectivity at 1 bar and 298 K, which are among the highest reported selectivity values at such conditions, for the class of porous frameworks, including the metal organic frameworks (MOFs).


Molecular simulation Gmelinite topology Pore size analysis Gas mixture adsorption 



Calculations have been performed in the High Performance Computing facilities of the Environmental Research Laboratory in NCSR Demokritos.


  1. Amrouche, H., Aguado, S., Prez-Pellitero, J., Chizallet, C., Siperstein, F., Farrusseng, D., Bats, N., Nieto-Draghi, C.: Experimental and computational study of functionality impact on sodalite-zeolitic imidazolate frameworks for CO2 separation. J. Phys. Chem. C 115(33), 16425 (2011)CrossRefGoogle Scholar
  2. Babarao, R., Dai, S., Jiang, D.E.: Effect of pore topology and accessibility on gas adsorption capacity in zeolitic-imidazolate frameworks: bringing molecular simulation close to experiment. J. Phys. Chem. C 115(16), 8126 (2011)CrossRefGoogle Scholar
  3. Ban, Y., Li, Y., Liu, X., Peng, Y., Yang, W.: Solvothermal synthesis of mixed-ligand metal-organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater. 173, 29 (2013)CrossRefGoogle Scholar
  4. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O.M.: High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865), 939 (2008)CrossRefPubMedGoogle Scholar
  5. Banerjee, R., Furukawa, H., Britt, D., Knobler, C., OKeeffe, M., Yaghi, O.M.: Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc. 131(11), 3875 (2009). CrossRefPubMedGoogle Scholar
  6. Banerjee, D., Simon, C., Plonka, A., Motkuri, R., Liu, J., Chen, X., Smit, B., Parise, J., Haranczyk, M., Thallapally, P.: Metal-organic framework with optimally selective xenon adsorption and separation. Nat. Commun. 7, ncomms11831 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  7. Beake, E.O.R., Dove, M.T., Phillips, A.E., Keen, D.A., Tucker, M.G., Goodwin, A.L., Bennett, T.D., Cheetham, A.K.: Flexibility of zeolitic imidazolate framework structures studied by neutron total scattering and the reverse Monte Carlo method. J. Phys.: Condens. Matter 25(39), 395403 (2013)Google Scholar
  8. Cairns, A.B., Goodwin, A.L.: Structural disorder in molecular framework materials. Chem. Soc. Rev. 42, 4881 (2013)CrossRefPubMedGoogle Scholar
  9. Cao, F., Sun, Y., Wang, L., Sun, H.: Kinetic effects in predicting adsorption using the GCMC method-using CO2 adsorption on ZIFs as an example. RSC Adv. 4, 27571 (2014)CrossRefGoogle Scholar
  10. Coudert, F.X.: The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. Phys. Chem. Chem. Phys. 12(36), 10904 (2010)CrossRefPubMedGoogle Scholar
  11. Dong, X., Huang, K., Liu, S., Ren, R., Jin, W., Lin, Y.: Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. J. Mater. Chem. 22(36), 19222 (2012)CrossRefGoogle Scholar
  12. Duren, T., Millange, F., Frey, G., Walton, K.S., Snurr, R.Q.: Calculating geometric surface areas as a characterization tool for metal-organic frameworks. J. Phys. Chem. C 111(42), 15350 (2007)CrossRefGoogle Scholar
  13. Dubbeldam, D., Calero, S., Ellis, D., Snurr, R.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42(2), 81 (2016)CrossRefGoogle Scholar
  14. Fairen-Jimenez, D., Moggach, S.A., Wharmby, M.T., Wright, P.A., Parsons, S., Dren, T.: Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc. 133(23), 8900 (2011)CrossRefPubMedGoogle Scholar
  15. First, E., Floudas, C.: MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater. 165, 32 (2013)CrossRefGoogle Scholar
  16. First, E.L., Gounaris, C.E., Floudas, C.A.: Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks. Langmuir 29(18), 5599 (2013)CrossRefPubMedGoogle Scholar
  17. Fischer, M., Bell, R.G.: Interaction of hydrogen and carbon dioxide with sod-type zeolitic imidazolate frameworks: a periodic DFT-D study. CrystEngComm 16, 1934 (2014)CrossRefGoogle Scholar
  18. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, Incorporated (1996)Google Scholar
  19. Frysali, M., Klontzas, E., Tylianakis, E., Froudakis, G.: Tuning the interaction strength and the adsorption of CO2 in metal organic frameworks by functionalization of the organic linkers. Microporous Mesoporous Mater. 227, 144 (2016)CrossRefGoogle Scholar
  20. Galvelis, R., Slater, B., Chaudret, R., Creton, B., Nieto-Draghi, C., Mellot-Draznieks, C.: Impact of functionalized linkers on the energy landscape of ZIFs. CrystEngComm 15, 9603 (2013)CrossRefGoogle Scholar
  21. Gcyener, C., van den Bergh, J., Gascon, J., Kapteijn, F.: Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic Framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132(50), 17704 (2010)CrossRefGoogle Scholar
  22. Gotzias, A.: The effect of gme topology on multicomponent adsorption in zeolitic imidazolate frameworks. Phys. Chem. Chem. Phys. 19(1), 871 (2017)CrossRefGoogle Scholar
  23. M. Harper. Python-ternary: a python library for ternary plots; 2011. (2015)
  24. Hu, Y., Liu, Z., Xu, J., Huang, Y., Song, Y.: Evidence of pressure enhanced CO2 storage in ZIF-8 probed by FTIR spectroscopy. J. Am. Chem. Soc. 135(25), 9287 (2013)CrossRefPubMedGoogle Scholar
  25. Ismail, I.M.: Cross-sectional areas of adsorbed nitrogen, argon, krypton, and oxygen on carbons and fumed silicas at liquid nitrogen temperature. Langmuir 8(2), 360 (1992)CrossRefGoogle Scholar
  26. Karozis, S., Charalambopoulou, G., Steriotis, T., Stubos, A., Kainourgiakis, M.: Determining the specific surface area of metal organic frameworks based on a computational approach. Colloids Surf. A 526, 14 (2017)CrossRefGoogle Scholar
  27. Kasik, A., Dong, X., Lin, Y.: Synthesis and stability of zeolitic imidazolate framework-68 membranes. Microporous Mesoporous Mater. 204(C), 99 (2015)CrossRefGoogle Scholar
  28. Keskin, S., Sholl, D.S.: Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models. Langmuir 25(19), 11786 (2009)CrossRefPubMedGoogle Scholar
  29. Kolokolov, D.I., Stepanov, A.G., Jobic, H.: Mobility of the 2-methylimidazolate linkers in ZIF-8 probed by 2H NMR: saloon doors for the guests. J. Phys. Chemi. C 119(49), 27512 (2015)CrossRefGoogle Scholar
  30. Lawler, K.V., Hulvey, Z., Forster, P.M.: On the importance of a precise crystal structure for simulating gas adsorption in nanoporous materials. Phys. Chem. Chem. Phys. 17, 18904 (2015). CrossRefPubMedGoogle Scholar
  31. Liao, Y.T., Dutta, S., Chien, C.H., Hu, C.C., Shieh, F.K., Lin, C.H., Wu, K.W.: Synthesis of mixed-ligand zeolitic imidazolate framework (ZIF-8-90) for CO2 adsorption. J. Inorg. Organomet. Polym. Mater. 25(2), 251 (2015)CrossRefGoogle Scholar
  32. Lin, L.C., Berger, A., Martin, R., Kim, J., Swisher, J., Jariwala, K., Rycroft, C., Bhown, A., Deem, M., Haranczyk, M., Smit, B.: In silico screening of carbon-capture materials. Nat. Mater. 11(7), 633 (2012)CrossRefPubMedGoogle Scholar
  33. Liu, Y., Liu, J., Lin, Y., Chang, M.: Effects of water vapor and trace gas impurities in flue gas on CO2/N2 separation using ZIF-68. J. Phys. Chem. C 118(13), 6744 (2014)CrossRefGoogle Scholar
  34. Livingston, H.K.: Cross-sectional areas of molecules adsorbed on solid surfaces1a. J. Am. Chem. Soc. 66(4), 569 (1944)CrossRefGoogle Scholar
  35. Low, Z.X., Yao, J., Liu, Q., He, M., Wang, Z., Suresh, A.K., Bellare, J., Wang, H.: Crystal transformation in zeolitic-imidazolate framework. Cryst. Growth Des. 14(12), 6589 (2014)CrossRefGoogle Scholar
  36. Mahynski, N., Shen, V.: Tuning flexibility to control selectivity in soft porous crystals. J. Chem. Phys. 146(4), 044706 (2017)CrossRefPubMedGoogle Scholar
  37. Mellot-Draznieks, C., Kerkeni, B.: Exploring the interplay between ligand and topology in zeolitic imidazolate frameworks with computational chemistry. Mol. Simul. 40(1–3), 25 (2014)CrossRefGoogle Scholar
  38. Parkes, M.V., Demir, H., Teich-McGoldrick, S.L., Sholl, D.S., Greathouse, J.A., Allendorf, M.D.: Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8. Microporous Mesoporous Mater. 194, 190 (2014)CrossRefGoogle Scholar
  39. Phuong, V.T., Chokbunpiam, T., Fritzsche, S., Remsungnen, T., Rungrotmongkol, T., Chmelik, C., Caro, J., Hannongbua, S.: Methane in zeolitic imidazolate framework ZIF-90: adsorption and diffusion by molecular dynamics and Gibbs ensemble Monte Carlo. Microporous Mesoporous Mater. 235, 69 (2016)CrossRefGoogle Scholar
  40. Pimentel, B.R., Parulkar, A., Zhou, E.K., Brunelli, N.A., Lively, R.P.: Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. ChemSusChem 7(12), 3202 (2014)CrossRefPubMedGoogle Scholar
  41. Pulido, A., Chen, L., Kaczorowski, T., Holden, D., Little, M., Chong, S., Slater, B., McMahon, D., Bonillo, B., Stackhouse, C., Stephenson, A., Kane, C., Clowes, R., Hasell, T., Cooper, A., Day, G.: Functional materials discovery using energy-structure-function maps. Nature 543(7647), 657 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  42. Rana, M.K., Suffritti, G.B., Demontis, P., Masia, M.: Simulation study of CO2 adsorption properties in small zeolite imidazolate frameworks. Chem. Phys. Lett. 580, 99 (2013)CrossRefGoogle Scholar
  43. Sarkisov, L., Harrison, A.: Computational structure characterisation tools in application to ordered and disordered porous materials. Mol. Simul. 37(15), 1248 (2011)CrossRefGoogle Scholar
  44. Simon, C.M., Smit, B., Haranczyk, M.: pyIAST: ideal adsorbed solution theory (IAST) Python package. Comput. Phys. Commun. 200, 364 (2016)CrossRefGoogle Scholar
  45. Sirjoosingh, A., Alavi, S., Woo, T.K.: Grand-canonical Monte Carlo and molecular-dynamics simulations of carbon-dioxide and carbon-monoxide adsorption in zeolitic imidazolate framework materials. J. Phys. Chem. C 114(5), 2171 (2010)CrossRefGoogle Scholar
  46. Spanopoulos, I., Bratsos, I., Tampaxis, C., Vourloumis, D., Klontzas, E., Froudakis, G., Charalambopoulou, G., Steriotis, T., Trikalitis, P.: Exceptional gravimetric and volumetric CO2 uptake in a palladated NbO-type MOF utilizing cooperative acidic and basic, metal-CO2 interactions. Chem. Commun. 52(69), 10559 (2016)CrossRefGoogle Scholar
  47. Tanaka, H., Ohsaki, S., Hiraide, S., Yamamoto, D., Watanabe, S., Miyahara, M.T.: Adsorption-induced structural transition of ZIF-8: a combined experimental and simulation study. J. Phys. Chem. C 118(16), 8445 (2014)CrossRefGoogle Scholar
  48. Thompson, J.A., Blad, C.R., Brunelli, N.A., Lydon, M.E., Lively, R.P., Jones, C.W., Nair, S.: Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater. 24(10), 1930 (2012)CrossRefGoogle Scholar
  49. Thornton, A., Simon, C., Kim, J., Kwon, O., Deeg, K., Konstas, K., Pas, S., Hill, M., Winkler, D., Haranczyk, M., Smit, B.: Materials genome in action: identifying the performance limits of physical hydrogen storage. Chem. Mater. 29(7), 2844 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van Den Bergh, J., Gcyener, C., Pidko, E., Hensen, E., Gascon, J., Kapteijn, F.: Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chemistry 17(32), 8832 (2011)CrossRefPubMedGoogle Scholar
  51. Van der Perre, S., Van Assche, T., Bozbiyik, B., Lannoeye, J., De Vos, D.E., Baron, G.V., Denayer, J.F.M.: Adsorptive characterization of the ZIF-68 metal-organic framework: a complex structure with amphiphilic properties. Langmuir 30(28), 8416 (2014)CrossRefPubMedGoogle Scholar
  52. Van der Perre, S., Bozbiyik, B., Lannoeye, J., De Vos, D.E., Baron, G.V., Denayer, J.F.M.: Experimental study of adsorptive interactions of polar and nonpolar adsorbates in the zeolitic imidazolate framework ZIF-68 via pulse gas chromatography. J. Phys. Chem. C 119(4), 1832 (2015)CrossRefGoogle Scholar
  53. Wilmer, C., Leaf, M., Lee, C., Farha, O., Hauser, B., Hupp, J., Snurr, R.: Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4(2), 83 (2012)CrossRefGoogle Scholar
  54. Yuan, W., Zhang, X., Li, L.: Synthesis of zeolitic imidazolate. Framework-69 for adsorption separation of ethane and ethylene. J. Solid State Chem. 251, 198 (2017)CrossRefGoogle Scholar
  55. Zhang, L., Wu, G., Jiang, J.: Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8: effect of structural flexibility. J. Phys. Chem. C 118(17), 8788 (2014)CrossRefGoogle Scholar
  56. Zhao, P., Lampronti, G.I., Lloyd, G.O., Suard, E., Redfern, S.A.T.: Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7. J. Mater. Chem. A 2, 620 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anastasios Gotzias
    • 1
  • Michael Kainourgiakis
    • 2
  • Athanassios Stubos
    • 2
  1. 1.Institute of Nanoscience and NanotechnologyNCSR DemokritosAthensGreece
  2. 2.Institute of Nuclear and Radiological Sciences and Technology, Energy and SafetyNCSR DemokritosAthensGreece

Personalised recommendations