, Volume 24, Issue 2, pp 169–177 | Cite as

Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas

  • Jose F. Vivo-Vilches
  • Agustín F. Pérez-Cadenas
  • Francisco J. Maldonado-Hódar
  • Francisco Carrasco-Marín
  • Maria J. Regufe
  • Ana M. Ribeiro
  • Alexandre F. P. Ferreira
  • Alirio E. Rodrigues


A carbon xerogel obtained by carbonization of a resorcinol–formaldehyde polymer which was synthesized using Cs2CO3 as catalyst was employed as CO2 selective adsorbent for biogas upgrading. The material presented a large narrow micropore volume (W0(CO2) = 0.34 cm3 g−1) and macropore volume; as expected for a carbon xerogel, these macropores are very regular in size. The CO2 preferential adsorption onto this material was tested by analysing adsorption equilibrium isotherms of both gases (CO2 and CH4) and breakthrough curves at different inlet concentrations. Equilibrium studies showed a large CO2 uptake (qsat = 6.57 mol kg−1 and ΔHads = − 28.4 kJ mol−1) compared to the CH4 one (qsat = 3.83 mol kg−1 and ΔHads = − 19.6 kJ mol−1) revealing a high CO2 to CH4 selectivity, especially at low pressures. Dynamic adsorption of both gases at different concentrations demonstrated the excellent performance of the prepared xerogel in biogas upgrading by selective adsorption of CO2. The adsorbent was tested in binary dynamic adsorption to estimate its performance when both gases are present; the carbon xerogel was able to completely separate them.


Carbon xerogel Biogas upgrading Carbon dioxide Selective adsorption 



This research is supported by the FEDER and Spanish projects CTQ2013-44789-R (MINECO) and P12-RNM-2892 (Junta de Andalucía). The author Vivo-Vilches is grateful to Spanish MECD for his FPU grant. This work was financially supported by: Project POCI-01-0145-FEDER-006984—Associate Laboratory LSRE-LCM funded by FEDER through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI)—and by national funds through FCT—Fundação para a Ciência e a Tecnologia.


  1. Al-Muhtaseb, S.A., Ritter, J.A.: Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater. 15(2), 101–114 (2003)CrossRefGoogle Scholar
  2. Álvarez-Gutiérrez, N., García, S., Gil, M.V., Rubiera, F., Pevida, C.: Towards bio-upgrading of biogas: biomass waste-based adsorbents. Energy Procedia. 63, 6527–6533 (2014)CrossRefGoogle Scholar
  3. Álvarez-Gutiérrez, N., Gil, M.V., Rubiera, F., Pevida, C.: Adsorption performance indicators for the CO2/CH4 separation: application to biomass-based activated carbons. Fuel Process. Technol. 142, 361–369 (2016)CrossRefGoogle Scholar
  4. Awadallah, F., Al-Muhtaseb, S.A., Jeong, H.K.: (2017). Selective adsorption of carbon dioxide, methane and nitrogen using resorcinol–formaldehyde-xerogel activated carbon. Adsorption 23, 933–944CrossRefGoogle Scholar
  5. Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)CrossRefGoogle Scholar
  6. Belmabkhout, Y., Sayari, A.: Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 2: Adsorption of CO2/N2, CO2/CH4 and CO2/H2 binary mixtures. Chem. Eng. Sci. 64(17), 3729–3735 (2009)CrossRefGoogle Scholar
  7. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60(2), 309–319 (1938)CrossRefGoogle Scholar
  8. Campo, M.C., Ribeiro, A.M., Ferreira, A.F.P., Santos, J.C., Lutz, C., Loureiro, J.M., Rodrigues, A.E.: (2016). Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite. Fuel Process. Technol. 143, 185–194CrossRefGoogle Scholar
  9. Corno, L., Pilu, R., Tambone, F., Scaglia, B., Adani, F.: New energy crop giant cane (Arundo donax L.) can substitute traditional energy crops increasing biogas yield and reducing costs. Biores. Technol. 191, 197–204 (2015)CrossRefGoogle Scholar
  10. de Arespacochaga, N., Valderrama, C., Raich-Montiu, J., Crest, M., Mehta, S., Cortina, J.L.: Understanding the effects of the origin, occurrence, monitoring, control, fate and removal of siloxanes on the energetic valorization of sewage biogas—a review. Renew. Sustain. Energy Rev. 52, 366–381 (2015)CrossRefGoogle Scholar
  11. Dubinin, M.M.: Inhomogeneous microporous structures of carbonaceous adsorbents. Carbon 19(4), 321–324 (1981)CrossRefGoogle Scholar
  12. Fatemi, S., Vesali-Naseh, M., Cyrus, M., Hashemi, J.: Improving CO2/CH4 adsorptive selectivity of carbon nanotubes by functionalization with nitrogen-containing groups. Chem. Eng. Res. Des. 89(9), 1669–1675 (2011)CrossRefGoogle Scholar
  13. Ferreira, A.F.P., Ribeiro, A.M., Kulaç, S., Rodrigues, A.E.: Methane purification by adsorptive processes on MIL-53(Al). Chem. Eng. Sci. 124, 79–95 (2015)CrossRefGoogle Scholar
  14. Gallegos-Suárez, E., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J., Carrasco-Marín, F.: On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem. Eng. J. 181–182, 851–855 (2012)CrossRefGoogle Scholar
  15. Gil, M.V., Álvarez-Gutiérrez, N., Martínez, M., Rubiera, F., Pevida, C., Morán, A.: Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chem. Eng. J. 269, 148–158 (2015)CrossRefGoogle Scholar
  16. Leonzio, G.: Upgrading of biogas to bio-methane with chemical absorption process: simulation and environmental impact. J. Clean. Prod. 131, 364–375 (2016)CrossRefGoogle Scholar
  17. Maldonado-Hódar, F.J.: Advances in the development of nanostructured catalysts based on carbon gels. Cataly. Today 218–219(0), 43–50 (2013)CrossRefGoogle Scholar
  18. Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., Braccio, G.: (2013). Biogas upgrading via membrane process: modelling of pilot plant scale and the end uses for the grid injection. Fuel 107, 585–592CrossRefGoogle Scholar
  19. Montanari, T., Finocchio, E., Salvatore, E., Garuti, G., Giordano, A., Pistarino, C., Busca, G.: CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. Energy. 36(1), 314–319 (2011)CrossRefGoogle Scholar
  20. Morales-Torres, S., Maldonado-Hódar, F.J., Pérez-Cadenas, A.F., Carrasco-Marín, F.: Structural characterization of carbon xerogels: from film to monolith. Microporous Mesoporous Mater. 153, 24–29 (2012)CrossRefGoogle Scholar
  21. Nandi, M., Okada, K., Dutta, A., Bhaumik, A., Maruyama, J., Derks, D., Uyama, H.: Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation. Chem. Commun. 48(83), 10283–10285 (2012)CrossRefGoogle Scholar
  22. Nie, H., Jiang, H., Chong, D., Wu, Q., Xu, C., Zhou, H.: Comparison of water scrubbing and propylene carbonate absorption for biogas upgrading process. Energy Fuels. 27(6), 3239–3245 (2013)CrossRefGoogle Scholar
  23. Pampel, J., Denton, C., Fellinger, T.P.: Glucose derived ionothermal carbons with tailor-made porosity. Carbon. 107, 288–296 (2016)CrossRefGoogle Scholar
  24. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24(9), 3221–3227 (1989)CrossRefGoogle Scholar
  25. Pekala, R.W.: Low density resorcinol–formaldehyde aerogels. [US Patent 4997804]. (1991)Google Scholar
  26. Pérez-Rodríguez, N., García-Bernet, D., Domínguez, J.M.: Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Biores. Technol. 221, 130–138 (2016)CrossRefGoogle Scholar
  27. Pessuto, J., Scopel, B.S., Perondi, D., Godinho, M., Dettmer, A.: (2016). Enhancement of biogas and methane production by anaerobic digestion of swine manure with addition of microorganisms isolated from sewage sludge. Process Saf. Environ. Prot. 104A, 233–239CrossRefGoogle Scholar
  28. Rey-Raap, N., Angel Menéndez, J., Arenillas, A.: RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater. 195, 266–275 (2014)CrossRefGoogle Scholar
  29. Seo, D.J., Gou, Z., Fujita, H., Fujii, T., Sakoda, A.: Simple fabrication of molecular sieving carbon for biogas upgrading via a temperature controlled carbonization of Phyllostachys pubescens. Renew Energy. 86, 693–702 (2016)CrossRefGoogle Scholar
  30. Stoeckli, F.: Porosity in carbon. In: Patrick, J. (ed.) Characterization and Applications. Arnold, London (1995)Google Scholar
  31. Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X.: Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 51, 521–532 (2015)CrossRefGoogle Scholar
  32. Tuinier, M.J., van Sint Annaland, M.: Biogas purification using cryogenic packed-bed technology. Ind. Eng. Chem. Res. 51(15), 5552–5558 (2012)CrossRefGoogle Scholar
  33. Vivo-Vilches, J.F., Carrasco-Marín, F., Pérez-Cadenas, A.F., Maldonado-Hódar, F.J.: Fitting the porosity of carbon xerogel by CO2 activation to improve the TMP/n-octane separation. Microporous Mesoporous Mater. 209, 10–17 (2015)CrossRefGoogle Scholar
  34. Wu, X., Yuan, B., Bao, Z., Deng, S.: Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework. J. Colloid Interface Sci. 430, 78–84 (2014)CrossRefGoogle Scholar
  35. Wu, B., Zhang, X., Xu, Y., Bao, D., Zhang, S.: (2015). Assessment of the energy consumption of the biogas upgrading process with pressure swing adsorption using novel adsorbents. J. Clean. Prod. 101, 251–261CrossRefGoogle Scholar
  36. Wu, A., Lovett, D., McEwan, M., Cecelja, F., Chen, T.: A spreadsheet calculator for estimating biogas production and economic measures for UK-based farm-fed anaerobic digesters. Biores. Technol. 220, 479–489 (2016)CrossRefGoogle Scholar
  37. Xue, Q., Liu, Y.: Mixed-amine modified SBA-15 as novel adsorbent of CO2 separation for biogas upgrading. Sep. Sci. Technol. 46(4), 679–686 (2011)CrossRefGoogle Scholar
  38. Yu, J., Guo, M., Muhammad, F., Wang, A., Yu, G., Ma, H., Zhu, G.: (2014). Simple fabrication of an ordered nitrogen-doped mesoporous carbon with resorcinol–melamine–formaldehyde resin. Microporous Mesoporous Mater. 190, 117–127CrossRefGoogle Scholar
  39. Zhang, X.Q., Li, W.C., Lu, A.H.: Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Mater. 30(6), 481–501 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jose F. Vivo-Vilches
    • 1
  • Agustín F. Pérez-Cadenas
    • 1
  • Francisco J. Maldonado-Hódar
    • 1
  • Francisco Carrasco-Marín
    • 1
  • Maria J. Regufe
    • 2
  • Ana M. Ribeiro
    • 2
  • Alexandre F. P. Ferreira
    • 2
  • Alirio E. Rodrigues
    • 2
  1. 1.Carbon Materials Research Group, Department of Inorganic ChemistryUniversity of GranadaGranadaSpain
  2. 2.Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LA LSRE-LCM), Department of Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations