, Volume 24, Issue 2, pp 191–201 | Cite as

DFT study of the adsorption and dissociation of 5-hydroxy-3-butanedithiol-1,4-naphthaquinone (Jug-C4-thiol) on Au(111) surface

  • Karima Lassoued
  • Mahamadou SeydouEmail author
  • Fayçal Raouafi
  • Fadhel Larbi
  • Philippe Lang
  • Boubakar DiawaraEmail author


Density functional theory has been used to investigate the adsorption and dissociation of 5-hydroxy-3-hexanediol-1,4-naphthaquinone (Jug-C4-thiol) at a coverage of p(4 × 4) on a Au(111) surface. Both physisorption and chemisorption processes are investigated. For each process, the surface energy potential is explored by an exhaustive test of the adsorption site. The most favorable site is found to be face-centered cubic. The adsorption energies are less than − 0.20 eV in the case of physisorption, while they range from − 1.70 to − 1.92 eV for chemisorption. The effect of the naphthoquinone function is negligible in the adsorption process. The alkyl chain inhibits electron delocalization between the surface and the conjugated head of the molecule. Analysis of the bonding shows the formation of two ionocovalent bonds between the sulfur and the gold atoms. The thermodynamics and kinetics of S–H bond dissociation are studied. The results reveal that adsorption involves a dissociation path in which a hydrogen atom moves to the most neighboring site and a hydrogen atom migrates to its most stable site. The maximum barrier energy of the first step is less than 2.7 eV while the migration barrier does not exceed 0.5 eV.


Adsorption Functional molecule Au (111) DFT Density of states NEB method 



DFT calculations were performed using HPC resources from GENCI- [CCRT/CINES/IDRIS] (Grant 2017-[A0020807006]).


  1. Akinaga, Y., Nakajima, T., Hirao, K.: A density functional study on the adsorption of methanethiolate on the (111) surfaces of noble metals. J. Chem. Phys. 114, 8555–8564 (2001)CrossRefGoogle Scholar
  2. Amabilino, D.B., Gale, P.A.: Supramolecular chemistry anniversary. Chem. Soc. Rev. 46, 2376 (2017)CrossRefGoogle Scholar
  3. Askerka, M., Pichugina, D., Kuz’menko, N., Shestakov, A.: Theoretical prediction of S–H bond rupture in methanethiol upon interaction with gold. J. Phys. Rev. A. 116, 7686–7693 (2012)Google Scholar
  4. Battaglini, N., Repain, V., Lang, P., Horowitz, G., Rousset, S.: Self-assembly of an octanethiol monolayer on a gold-stepped surface. Langmuir 24, 2042–2050 (2008)CrossRefGoogle Scholar
  5. Battaglini, N., Qin, Z., Campiglio, P., Repain, V., Chacon, C., Rousset, S., Lang, P.: Directed growth of mixed self-assembled monolayers on a nanostructured template: a step toward the patterning of functional molecular domains. Langmuir 28, 15095–15105 (2012)CrossRefGoogle Scholar
  6. Baunach, T., Ivanova, V., Kolb, D.M., Boyen, H.G., Ziemann, P., Büttner, M., Oelhafen, P.: A new approach to the electrochemical metallization of organic monolayers: palladium deposition onto a 4,4′-dithiodipyridine self-assembled monolayer. Adv. Mater. 16, 2024–2028 (2004)CrossRefGoogle Scholar
  7. Bedford, E., Humblot, V., M¦thivier, C., Pradier, C.M., Gu, F., Tielens, F., Boujday, S.: An experimental and theoretical approach to investigate the effect of chain length on aminothiol adsorption and assembly on gold. Chem. Eur. J. 21, 14555–14561 (2015)CrossRefGoogle Scholar
  8. Blöchl, P.E., Jepsen, O., Andersen, O.K.: Improved tetrahedron method for brillouin-zone integrations. Phys. Rev. B. 49, 16223–16233 (1994)CrossRefGoogle Scholar
  9. Bouju, X., Mattioli, C., Franc, G., Pujol, A., Gourdon, A.: Bicomponent supramolecular architectures at the acuum: solid interface. Chem. Rev. 117, 1407–1444 (2017)CrossRefGoogle Scholar
  10. Bumm, L.A., Arnold, J.J., Cygan, M.T., Dunbar, T.D., Burgin, T.P., Jones, L., Allara, D.L., Tour, J.M., Weiss, P.S.: Are single molecular wires conducting. Science 271, 1705 (1996)CrossRefGoogle Scholar
  11. Cao, Y., Ge, Q., Dyer, D.J., Wang, L.: Steric effects on the adsorption of alkylthiolate self-assembled monolayers on Au (111). J. Phys. Chem. 107, 3803–3807 (2003)CrossRefGoogle Scholar
  12. Ferral, A., Patrito, E.M., Paredes-Olivera, P.: Structure and bonding of alkanethiols on Cu(111) and Cu(100). J. Phys. Chem. B. 110, 17050–17062 (2006)CrossRefGoogle Scholar
  13. Ferrighi, L., Pan, Y.X., Grönbeck, H., Hammer, B.: Study of alkylthiolate self-assembled monolayers on Au(111) using a semilocal meta-GGA density functional. J. Phys. Chem. C. 116, 7374–7379 (2012)CrossRefGoogle Scholar
  14. Fetisov, E.O., Siepmann, J.I.: Structure and phase behavior of mixed self-assembled alkanethiolate monolayers on gold nanoparticles: a Monte Carlo Study. J. Phys. Chem. B. 120, 1972–1978 (2016)CrossRefGoogle Scholar
  15. Gottschalck, J., Hammer, B.: A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111). J. Chem. Phys. 116, 784–790 (2001)CrossRefGoogle Scholar
  16. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  17. Grönbeck, H., Curioni, A., Andreoni, W.: Thiols and disulfides on the Au(111) surface: the headgroup–gold interaction. J. Am. Chem. Soc. 122, 3839–3842 (2000)CrossRefGoogle Scholar
  18. Guesmi, H., Luque, N.B., Santos, E., Tielens, F.: Does the S–H bond always break after adsorption of an alkylthiol on Au (111). Chem. Eur. J. 23, 1402–1408 (2016)CrossRefGoogle Scholar
  19. Hayashi, T., Morikawa, Y., Nozoye, H.: Adsorption state of dimethyl disulfide on Au(111): evidence for adsorption as thiolate at the bridge site. J. Chem. Phys. 114, 7615–7621 (2001)CrossRefGoogle Scholar
  20. Heimel, G., Romaner, L., Brédas, J.-L., Zojer, E.: Organic/metal interfaces in self-assembled monolayers of conjugated thiols: a first-principles benchmark study. Surf. Sci. 600, 4548–4562 (2006)CrossRefGoogle Scholar
  21. Heimel, G., Romaner, L., Zojer, E., Brédas, J.L.: A theoretical view on self-assembled monolayers in organic electronic devices. Acc. Chem. Res. 41, 721–729 (2008)CrossRefGoogle Scholar
  22. Heister, K., Allara, D.L., Bahnck, K., Frey, S., Zharnikov, M., Grunze, M.: Deviations from 1:1 compositions in self-assembled monolayers formed from adsorption of asymmetric dialkyl disulfides on gold. Langmuir 15, 5440–5443 (1999)CrossRefGoogle Scholar
  23. Henkelman, G., Jónsson, H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)CrossRefGoogle Scholar
  24. Higai, S.i., Nara, J., Ohno, T.: Tail molecule dependence of thiolate adsorption on Au(111) surface: theoretical study. J. Chem. Phys. 121, 970–972 (2004)CrossRefGoogle Scholar
  25. Ivanova, V., Baunach, T., Kolb, D.M.: Metal deposition onto a thiol-covered gold surface: a new approach. Electrochim. Acta. 50, 4283–4288 (2005)CrossRefGoogle Scholar
  26. Kassir, M., Roques-Carmes, T., Hamieh, T., Razafitianamaharavo, A., Barres, O., Toufaily, J., Villiéras, F.: Surface modification of TiO2 nanoparticles with AHAPS aminosilane: distinction between physisorption and chemisorption. Adsorption 19, 1197–1209 (2013)CrossRefGoogle Scholar
  27. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)CrossRefGoogle Scholar
  28. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B. 54, 11169–11186 (1996a)CrossRefGoogle Scholar
  29. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996b)CrossRefGoogle Scholar
  30. Kresse, G., Hafner, J.: Ab initio. Phys. Rev. B. 47, 558–561 (1993)CrossRefGoogle Scholar
  31. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999)CrossRefGoogle Scholar
  32. Ktari, N., Fourati, N., Zerrouki, C., Ruan, M., Seydou, M., Barbaut, F., Nal, F., Yaakoubi, N., Chehimi, M.M., Kalfat, R.: Design of a polypyrrole MIP-SAW sensor for selective detection of flumequine in aqueous media: correlation between experimental results and DFT calculations. RSC Adv. 5, 88666 (2015)CrossRefGoogle Scholar
  33. Kučera, J., Gross, A.: Adsorption of 4-Mercaptopyridine on Au(111): a periodic DFT study. Langmuir. 24, 13985–13992 (2008)CrossRefGoogle Scholar
  34. Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.T., Parikh, A.N., Nuzzo, R.G.: Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113, 7152–7167 (1991)CrossRefGoogle Scholar
  35. Lang, P., Qin, Z., Noel, V., Seydou, M., Battaglini, N., Zrig, S., Anquetin, G., Maurel, F., Piro, B., Pham, M.C.: Nanodomains of juglonethiol on Au(111): relationship between domain size and electrochemical properties. J. Phys. Chem. 119, 29015–29026 (2015)CrossRefGoogle Scholar
  36. Lari, A., Gleiter, R., Rominger, F.: Supramolecular organization based on van der Waals forces: syntheses andsolid state structures of isomeric [6.6] cyclophanes with 2,5-Diselenahex-3-yne bridges. Eur. J. Org. Chem. 14, 2267–2274 (2009)CrossRefGoogle Scholar
  37. Lehn, J.M.: Supramolecular chemistry: where from? Where to? Chem. Soc. Rev. 46, 2378 (2017)CrossRefGoogle Scholar
  38. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Self-Assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1170 (2005)CrossRefGoogle Scholar
  39. Luque, N.B., Santos, E., Andres, J., Tielens, F.: Effect of coverage and defects on the adsorption of propanethiol on Au(111) surface: a theoretical study. Langmuir. 27, 14514–14521 (2011)CrossRefGoogle Scholar
  40. Majumder, C., Mizuseki, H., Kawazoe, Y.: Thiophene thiol on the Au(111) surface: size-dependent adsorption study. J. Chem. Phys. 118, 9809–9813 (2003)CrossRefGoogle Scholar
  41. Mali, K.S., Pearce, N., De Feyter, S., Champness, N.R.: Frontiers of supramolecular chemistry at solid surface. Chem. Soc. Rev. 46, 2520 (2017)CrossRefGoogle Scholar
  42. Manolova, M., Ivanova, V., Kolb, D.M., Boyen, H.G., Ziemann, P., Büttner, M., Romanyuk, A., Oelhafen, P.: Metal deposition onto thiol-covered gold: platinum on a 4-mercaptopyridine SAM. Surf. Sci. 590, 146–153 (2005)CrossRefGoogle Scholar
  43. Manolova, M., Kayser, M., Kolb, D.M., Boyen, H.G., Ziemann, P., Mayer, D., Wirth, A.: Rhodium deposition onto a 4-mercaptopyridine SAM on Au(111). Electrochim. Acta 52, 2740–2745 (2007)CrossRefGoogle Scholar
  44. Maouche, N., Ktari, N., Bakas, I., Fourati, N., Zerrouki, C., Seydou, M., Maurel, F., Chehimi, M.M.: A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection. ‎J. Mol. Recognit. 28, 667–678 (2015)CrossRefGoogle Scholar
  45. March, G., Reisberg, S., Piro, B., Pham, M.C., Delamar, M., Noel, V., Odenthal, K., Hibbert, D.B., Gooding, J.J.: Electrochemical kinetic analysis of a 1,4-hydroxynaphthoquinone self-assembled monolayer. J. Electroanal. Chem. 622, 37–43 (2008)CrossRefGoogle Scholar
  46. Meena, S.K., Goldmann, C., Nassoko, D., Seydou, M., Marchandier, T., Moldovan, S., Ersen, O., Ribot, F., Chanéac, C., Sanchez, C., Portehault, D., Tielens, F., Sulpizi, M.: Nanophase Segregation of Self-Assembled Monolayers on Gold Nanoparticles. ACS Nano 11, 7371–7381 (2017)CrossRefGoogle Scholar
  47. Nara, J., Higai, S.I., Morikawa, Y., Ohno, T.: Density functional theory investigation of benzenethiol adsorption on Au(111). J. Chem. Phys. 120, 6705–6711 (2004)CrossRefGoogle Scholar
  48. Nassoko, D., Seydou, M., Goldmann, C., Chanéac, C., Sanchez, C., Portehault, D., Tielens, F.: Rationalizing the formation of binary mixed thiol self-assembled monolayers. Mater. Today Chem. 5, 34–42 (2017)CrossRefGoogle Scholar
  49. Pensa, E., Cortes, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M.H., Benitez, G., Rubert, A.A., Salvarezza, R.C.: The chemistry of the Sulfur gold interface: in search of a unified model. Acc. Chem. Res. 45, 1185 (2012)CrossRefGoogle Scholar
  50. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  51. Poirier, G.E.: Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy. Chem. Rev. 97, 1117–1128 (1997)CrossRefGoogle Scholar
  52. Porter, M.D., Bright, T.B., Allara, D.L., Chidsey, C.E.D.: Spontaneously organized molecular assemblies; 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568 (1987)CrossRefGoogle Scholar
  53. Raouafi, F., Seydou, M., Lassoued, K., Taleb, A., Diawara, B.: First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0). J. Phys. 28, 175001–175012 (2016)Google Scholar
  54. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., Tour, J.M.: Conductance of a molecular junction. Science 278, 252 (1997)CrossRefGoogle Scholar
  55. Richter, L.J., Yang, C.S.C., Wilson, P.T., Hacker, C.A., van Zee, R.D., Stapleton, J.J., Allara, D.L., Yao, Y., Tour, J.M.,: Optical characterization of oligo(phenylene–ethynylene) self-assembled monolayers on gold. J. Phys. Chem. B. 108, 12547–12559 (2004)CrossRefGoogle Scholar
  56. Ruan, M., Seydou, M., Noel, V., Piro, B., Maurel, F., Barbault, F.: Molecular dynamics simulation of a RNA aptasensor. J. Phys. Chem. B. 121, 4071–4080 (2017)CrossRefGoogle Scholar
  57. Santiso, E.E., George, A.M., Sliwinska-bartkowiak, M., Nardelli, M.B., Gubbins, K.E.: Effect of confinement on chemical reactions. Adsorption. 11, 349–354 (2005)CrossRefGoogle Scholar
  58. Schreiber, F.: Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–257 (2000)CrossRefGoogle Scholar
  59. Schwartz, D.K.: Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001)CrossRefGoogle Scholar
  60. Sellers, H., Ulman, A., Shnidman, Y., Eilers, J.E.: Structure and binding of alkanethiolates on gold and silver surface. J. Am. Chem. Soc. 115, 9389–9401 (1993)CrossRefGoogle Scholar
  61. Seydou, M., Teyssandier, J., Battaglini, N., Kenfack, G.T., Lang, P., Tielens, F., Maurel, F., Diawara, B.: Characterization of NTCDI supra-molecular networks on Au (111); combining STM, IR and DFT calculations. RSC Adv. 4, 25698–25708 (2014)CrossRefGoogle Scholar
  62. Sushko, M.L., Shluger, A.L.: Dipole–dipole interactions and the structure of self-assembled monolayers. J. Phys. Chem. B. 111, 4019–4025 (2007)CrossRefGoogle Scholar
  63. Syomin, D., Kim, J., Koel, B.E., Ellison, G.B.: Identification of adsorbed phenyl (C6H5) groups on metal surfaces: electron-induced dissociation of benzene on Au(111). J. Phys. Rev. 105, 8387–8394 (2001)Google Scholar
  64. Terrill, R.H., Tanzer, T.A., Bohn, P.W.: Structural evolution of hexadecanethiol monolayers on gold during assembly: substrate and concentration dependence of monolayer structure and crystallinity. Langmuir. 14, 845–854 (1998)CrossRefGoogle Scholar
  65. Thomson, R.H.: The reduction of juglone. J. Chem. Soc. 335, 1822–1825 (1952)CrossRefGoogle Scholar
  66. Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)CrossRefGoogle Scholar
  67. Vargas, M.C., Giannozzi, P., Selloni, A., Scoles, G.: Coverage-dependent adsorption of CH3S and (CH3S)2 on Au(111): a density functional theory study. J. Phys. Chem. 105, 9509–9513 (2001)CrossRefGoogle Scholar
  68. Vericat, C., Vela, M.E., Salvarezza, R.C.: Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 7, 3258–3268 (2005)CrossRefGoogle Scholar
  69. Vericat, C., Vela, M.E., Benitez, G.A., Gago, J.A.M., Torrelles, X., Alvarezza, R.C.: Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). J. Phys. 18, R867–R900 (2006)Google Scholar
  70. Vericat, C., Vela, M.E., Benitez, G., Carro, P., Salvarezza, R.C.: Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem. Soc. Rev. 39, 1805–1834 (2010)CrossRefGoogle Scholar
  71. Yourdshahyan, Y., Zhang, H.K., Rappe, A.M.: n-Alkyl thiol head-group interactions with the Au (111) surface. Phys. Rev. B. 63, 081405–081409 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karima Lassoued
    • 1
    • 2
    • 3
  • Mahamadou Seydou
    • 1
    Email author
  • Fayçal Raouafi
    • 2
  • Fadhel Larbi
    • 2
  • Philippe Lang
    • 1
  • Boubakar Diawara
    • 3
    Email author
  1. 1.Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRSParis Cedex 13France
  2. 2.Laboratoire de physico-chimie des microstructures et microsystèmesIPEST La Marsa Université de CarthageTunisTunisia
  3. 3.Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP)ParisFrance

Personalised recommendations