, Volume 25, Issue 3, pp 267–278 | Cite as

Activated carbons with adsorbed cations as photocatalysts for pollutants degradation in aqueous medium

  • V. Sydorchuk
  • O. I. Poddubnaya
  • M. M. Tsyba
  • O. Zakutevskyy
  • O. Khyzhun
  • S. Khalameida
  • A. M. PuziyEmail author


Oxidized activated carbon (AC) based on commercial coconut-shell carbon Aquacarb 607C has been prepared. This AC has micro-mesoporous structure and contains surface carboxyl and phenol/enol groups. Cu- and Co-containing ACs have been synthesized via ion-exchange in acid medium. According to potentiometric titration and XPS data, cation-exchanged forms of AC contain about 0.5% of metal ions. Such cation-containing ACs possess narrowed band gap compared oxidized AC as it is observed for doped oxides. Oxidized and cation-containing ACs have been tested as catalysts in photodegradation of dyes and phenol under UV- and visible irradiation. Initial oxidized AC is photoactive toward rhodamine B and methyl orange under UV illumination but inactive under visible light. For the first time it is shown that cation-exchanged forms of AC have enhanced activity towards rhodamine B, methyl orange and phenol in both UV and visible region. Therefore, the principal possibility of improving the photocatalytic properties of AC by introducing a minimal amount of copper and cobalt cations is shown.


Activated carbon Cation-exchanged forms Photocatalytic degradation UV and visible irradiation Decolourisation and mineralization 



Funding was provided by National Academy of Sciences of Ukraine (Grant No. 35NT).

Supplementary material

10450_2018_6_MOESM1_ESM.docx (201 kb)
Supplementary material 1 (DOCX 201 KB)


  1. An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., Ding, K.: Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity. Carbon 45, 1795–1801 (2009)CrossRefGoogle Scholar
  2. Bagheri, S., Julkapli, N., Hamid, A.S.: Functionalized activated carbon derived from biomass for photocatalysis applications perspective. Int. J. Photoenergy. 2015. (2015)Google Scholar
  3. Bandosz, T., Matos, J., Seredych, M., Islam, M., Alfano, R.: Photoactivity of S-doped nanoporous activated carbons: a new perspective for harvesting solar energy on carbon-based semiconductors. Appl. Catal. A 445–446, 159–165 (2012)CrossRefGoogle Scholar
  4. Biniak, S., Pakuła, M., Szymański, G., Świątkowski, A.: Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15, 6117–6122 (1999)CrossRefGoogle Scholar
  5. Boehm, H.: Free radicals and graphite. Carbon 50, 3154–3157 (2012)CrossRefGoogle Scholar
  6. Bustos-Ramírez, K., Barrera-Díaz, E., De Icaza-Herrera, C., Martínez-Hernández, M., Natividad-Rangel, A., Velasco-Santo, R.C.: 4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts. J. Environ. Health Sci. Eng. 13, 13–33 (2015)CrossRefGoogle Scholar
  7. Cao, L., Sahu, S., Anilkumar, P., Bunker, C., Xu, J., Shiral Fernando, K., Wang, P., Guliants, E., Tackett, I.I., Sun, K., Ya, P.: Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc. 133, 4754–4757 (2011)CrossRefGoogle Scholar
  8. Demirbas, E.: Adsorption of cobalt(II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorp. Sci. Technol. 21, 951–963 (2003)CrossRefGoogle Scholar
  9. Dhas, C., Venkatesh, R., Jothivenkatachalam, K., Nithya, A., Suji Benjamin, B., Ezhil Raj, M., Jeyadheepan, A., Sanjeeviraja, K.C.: Visible light driven photocatalytic degradation of Rhodamine B and Direct Red using cobalt oxide nanoparticles. Ceram. Int. 41, 9301–9313 (2015)CrossRefGoogle Scholar
  10. Estrade-Szwarckopf, H.: XPS photoemission in carbonaceous materials: a “defect” peak beside the graphitic asymmetric peak. Carbon 42, 1713–1721 (2004)CrossRefGoogle Scholar
  11. Gor, G., Thommes, M., Cychosz, A., Neimark, A.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583–1590 (2012)CrossRefGoogle Scholar
  12. Gupta, V., Jain, R., Mittal, A., Mathur, M., Sikarwar, S.: Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst. J.Colloid Interface Sci. 309, 464–469 (2007)CrossRefGoogle Scholar
  13. Haro, M., Velasco, L., Ania, C.: Carbon-mediated photoinduced reactions as a key factor in the photocatalytic performance of C/TiO2. Catal. Sci. Technol. 2, 2264–2272 (2012)CrossRefGoogle Scholar
  14. Hayyan, M., Hashim, M., Alnashef, I.: Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016)CrossRefGoogle Scholar
  15. Jeong, H., Yang, C., Kim, B., Kim, K.-J.: Valence band of graphite oxide. Europhys. Lett. 92, 37005-p1–37005-p4 (2010)CrossRefGoogle Scholar
  16. Kapinus, E., Viktorova, T., Khalyavka, T.: Dependence of the rate of photocatalytic decomposition of safranine on the catalyst concentration. Theor. Exp. Chem. 45, 114–117 (2009)CrossRefGoogle Scholar
  17. Khyzhun, O., Zhurakovsky, E., Sinelnichenko, A., Kolyagin, V.: Electronic structure of tantalum subcarbides studied by XPS, XES, and XAS methods. J. Electron Spectrosc. Relat. Phenom. 82, 179–192 (1996)CrossRefGoogle Scholar
  18. Khyzhun, O., Strunskus, T., Cramm, S., Solonin, Y.: Electronic structure of CuWO4: XPS, XES and NEXAFS studies. J. Alloys Compd. 389, 14–20 (2005)CrossRefGoogle Scholar
  19. Khyzhun, O., Bekenev, V., Atuchin, V., Galashov, E., Shlegel, V.: Electronic properties of ZnWO4 based on ab initio FP-LAPW band-structure calculations and X-ray spectroscopy data. Mater. Chem. Phys. 140, 588–595 (2013)CrossRefGoogle Scholar
  20. Klimm, D.: Electronic materials with a wide band gap: recent developments. Int. Union Crystallogr. J. 1, 281–290 (2014)CrossRefGoogle Scholar
  21. Landers, J., Gor, G., Neimark, A.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3–32 (2013)CrossRefGoogle Scholar
  22. Li, G., Dimitrijevic, N., Chen, L., Rajh, T., Gray, K.: Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites. J. Phys. Chem. C 112, 19040–19044 (2008)CrossRefGoogle Scholar
  23. Lu, S., Panchapakesan, B.: Photoconductivity in single wall carbon nanotube sheets. Nanotechnology 17, 1843–1850 (2006)CrossRefGoogle Scholar
  24. Lützenkirchen, J., Preočanin, T., Kovačević, D., Tomišić, V., Lövgren, L., Kallay, N.: Potentiometric titrations as a tool for surface charge determination. Croat. Chem. Acta 85, 391–417 (2012)CrossRefGoogle Scholar
  25. Matzer, S., Boehm, H.: Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon 36, 1697–1709 (1998)CrossRefGoogle Scholar
  26. Merka, O., Varovyi, Y., Bahnemann, D., Wark, M.: pH-control of the photocatalytic degradation mechanism of Rhodamine B over Pb3Nb4O13. J. Phys. Chem. C 115, 8014–8023 (2011)CrossRefGoogle Scholar
  27. Moreno-Castilla, C.: Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83–94 (2004)CrossRefGoogle Scholar
  28. Moreno-Castilla, C., Alvarez-Merino, M., López-Ramón, M., Rivera-Utrilla, J.: Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir 20, 8142–8148 (2004)CrossRefGoogle Scholar
  29. Moreno-Piraján, J., Giraldo, L.: Comparison of the oxidation of phenol with iron and copper supported on activated carbon from coconut shells. Arab. J. Sci. Eng. 38, 49–57 (2013)CrossRefGoogle Scholar
  30. Moulder, J., Stickle, W., Sobol, P., Bomben, K.: Handbook of X-ray Photoelectron Spectroscopy, 2nd edn. Perkin-Elmer, Eden Prairie (1992)Google Scholar
  31. Mrozowski, S.: Electronic properties and band model of carbons. Carbon 9, 97–109 (1971)CrossRefGoogle Scholar
  32. Myglovets, M., Poddubnaya, O., Sevastyanova, O., Lindström, M., Gawdzik, B., Sobiesiak, M., Tsyba, M., Sapsay, V., Klymchuk, D., Puziy, A.: Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions. Carbon 80, 771–783 (2014)CrossRefGoogle Scholar
  33. Neimark, A., Lin, Y., Ravikovitch, P., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 47, 1617–1628 (2009)CrossRefGoogle Scholar
  34. Ni, D., Shen, H., Li, H., Ma, Y., Zhai, T.: Synthesis of high efficient Cu/TiO2 photocatalysts by grinding and their size-dependent photocatalytic hydrogen production. Appl. Surf. Sci. 49, 241–249 (2017)CrossRefGoogle Scholar
  35. Oh, Y., Kim, S., Lee, I., Lee, J., Chang, K.: Direct band gap carbon superlattices with efficient optical transition. Phys. Rev. B 93, 085201-1–085201-8 (2016)Google Scholar
  36. Park, S.-J., Shin, J.-S.: Preparation and characterization of activated carbon/Cu catalyst by electroless copper plating for removal of NO. J. Porous Mater. 11, 15–19 (2004)CrossRefGoogle Scholar
  37. Puziy, A., Poddubnaya, O.: The properties of synthetic carbon derived from nitrogen- and phosphorus-containing polymer. Carbon 36, 45–50 (1998)CrossRefGoogle Scholar
  38. Puziy, A., Poddubnaya, O., Ritter, J., Ebner, A., Holland, C.: Elucidation of the ion binding mechanism in heterogeneous carbon-composite adsorbents. Carbon 39, 2313–2324 (2001)CrossRefGoogle Scholar
  39. Puziy, A., Poddubnaya, O., Ziatdinov, A.: On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon. Appl. Surf. Sci. 252, 8036–8038 (2006)CrossRefGoogle Scholar
  40. Puziy, A., Poddubnaya, O., Socha, R., Gurgul, J., Wisniewski, M.: XPS and NMR studies of phosphoric acid activated carbons. Carbon 46, 2113–2123 (2008)CrossRefGoogle Scholar
  41. Puziy, A., Kochkin, Y., Poddubnaya, O., Tsyba, M.: Ethyl tert-butyl ether synthesis using carbon catalysts from lignocellulose. Adsorpt. Sci. Technol. 35, 473–481 (2017)CrossRefGoogle Scholar
  42. Radovic, L., Moreno-Castilla, C., Rivera-Utrilla, J.: Carbon materials as adsorbents in aqueous solutions. In: Radovic, L.R. (ed.) Chemistry and Physics of Carbon, pp. 227–405. Marcel Dekker, Inc., New York (2000)CrossRefGoogle Scholar
  43. Rajagopal, S., Nataraj, D., Khyzhun, O., Djaoued, Y., Robichaud, J., Mangalaraj, D.: Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloys Compd. 493, 340–345 (2010)CrossRefGoogle Scholar
  44. Rauf, M., Ashraf, S.: Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10–18 (2009)CrossRefGoogle Scholar
  45. Rodriguez-Reinoso, F.: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159–175 (1998)CrossRefGoogle Scholar
  46. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to microporous adsorbents? In: Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., Seaton, N. (eds.) COPS-7: Characterization of Porous Solids VII. Studies in Surface Science and Catalysis, vol. 160, pp. 49–56. Elsevier. Amsterdam (2007)Google Scholar
  47. Sangami, G., Dharmaraj, N.: UV–visible spectroscopic estimation of photodegradation of rhodamine-B dye using tin(IV) oxide nanoparticles. Spectrochim. Acta A 97, 847–852 (2012)CrossRefGoogle Scholar
  48. Santos, A., Yustos, P., Cordero, T., Gomis, S., Rodríguez, S., García-Ochoa, F.: Catalytic wet oxidation of phenol on avtive carbon: stability, phenol conversion and mineralization. Catal. Today 102–103, 213–218 (2005)CrossRefGoogle Scholar
  49. Savio, A.K.P.D., Fletcher, J., Smith, K., Iyer, R., Bao, J.M., Robles Hernández, F.C.: Environmentally effective photocatalyst CoO–TiO2 synthesized by thermal precipitation of Co in amorphous TiO2. Appl. Catal. B 182, 449–455 (2016)CrossRefGoogle Scholar
  50. Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., Zhang, S.: Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv. 7, 14395–14405 (2017)CrossRefGoogle Scholar
  51. Shukla, P., Wang, S., Sun, H., Ang, M., Tada, H.M.: Activated carbon supported cobalt catalysts for advanced oxidation of organic contaminants in aqueous solution. Appl. Catal. B 100, 529–534 (2010)CrossRefGoogle Scholar
  52. Strelko, V., Kutz, V., Thrower, P.: On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38, 1499–1524 (2000)CrossRefGoogle Scholar
  53. Strelko, V., Kartel, N., Dukhno, I., Kuts, V., Clarkson, R., Odintsov, B.: Mechanism of reductive oxygen adsorption on activated carbons with various surface chemistry. Surf. Sci. 548, 281–290 (2004)CrossRefGoogle Scholar
  54. Sydorchuk, V., Khalameida, S., Zazhigalov, V., Zakutevskii, O.: Some properties of a vanadium molybdenum oxide composite produced by mechanochemical treatment in various media. Russ. J. Inorg. Chem. 58, 1349–1355 (2013)CrossRefGoogle Scholar
  55. Tang, X., Wang, Z., Huang, W., Jing, Q., Liu, N.: Construction of N-doped TiO2/MoS2 heterojunction with synergistic effect for enhanced visible photodegradation activity. Mater. Res. Bull. 105, 126–132 (2018)CrossRefGoogle Scholar
  56. Tarkovskaya, I.: Oxidized Carbon. Naukova Dumka, Kyiv (1981) (in Russian)Google Scholar
  57. Thommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  58. Trogadas, P., Fuller, T., Strasser, P.: Carbon as catalyst and support for electrochemical energy conversion. Carbon 75, 5–42 (2014)CrossRefGoogle Scholar
  59. Velasco, L., Fonseca, I., Parra, J., Lima, J., Ania, C.: Photochemical behaviour of activated carbons under UV irradiation. Carbon 50, 249–258 (2012)CrossRefGoogle Scholar
  60. Velasco, L., Maurino, V., Laurenti, E., Fonseca, I., Lima, J., Ania, C.: Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Appl. Catal. A 452, 1–8 (2013)CrossRefGoogle Scholar
  61. Velasco-Soto, M., Pérez-García, S., Alvarez-Quintana, J., Cao, Y., Nyborg, L., Licea-Jiménez, L.: Selective band gap manipulation of graphene oxide by its reduction with mild reagents. Carbon 93, 967–973 (2015)CrossRefGoogle Scholar
  62. Velo-Gala, I., López-Peñalver, J., Sánchez-Polo, M., Rivera-Utrilla, J.: Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B 142143, 694–704 (2013)Google Scholar
  63. Wang, J., Ng, Y., Lim, Y.-F., Ho, G.W.: Vegetable-extracted carbon dots and their nanocomposites for enhanced photocatalytic H2 production. RSC Adv. 83, 44117–44123 (2014)CrossRefGoogle Scholar
  64. Wong, S., Ngadi, N., Inuwa, I.M., Hassan, O.: Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. J. Clean. Prod. 175, 361–375 (2018)CrossRefGoogle Scholar
  65. Wu, T., Liu, G., Zhao, J., Hidaka, H., Serpone, N.: Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102, 5845–5851 (1998)CrossRefGoogle Scholar
  66. Xiaoyan, G., Xiaojie, Z., Yincai, T., Yabei, H., Zhang, Y., Yanqin, Z.: Preparation of Cu2O/AC photocatalysts and their photocatalytic activity in degradation of pyrocatechol. Kinet. Catal. 52, 672–677 (2011)CrossRefGoogle Scholar
  67. Xu, M., Jia, S., Chen, C., Zhang, Z., Yan, J., Guo, Y., Zhang, Y., Zhao, W., Yun, J., Wang, Y.: Microwave-assistant hydrothermal synthesis of SnO2@ZnO hierarchical nanostructures enhanced photocatalytic performance under visible light irradiation. Mater. Res. Bull. 106, 74–80 (2018)CrossRefGoogle Scholar
  68. Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.H., Teng, H.: Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 20, 2255–2262 (2010)CrossRefGoogle Scholar
  69. Zabihi, M., Khorasheh, F., Shayegan, J.: Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Adv. 5, 5107–5122 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Sorption and Problems of EndoecologyNAS of UkraineKyivUkraine
  2. 2.I.M. Frantsevych Institute for Problems of Materials ScienceNational Academy of Science of UkraineKyivUkraine

Personalised recommendations