Adsorption

, Volume 24, Issue 2, pp 203–219 | Cite as

Towards polymer grade ethylene production with Cu-BTC: gas-phase SMB versus PSA

  • Vanessa F. D. Martins
  • Ana M. Ribeiro
  • Jong-San Chang
  • José M. Loureiro
  • Alexandre Ferreira
  • Alírio E. Rodrigues
Article
  • 157 Downloads

Abstract

The recovery of ethylene as a product from ethylene/ethane mixtures by adsorptive processes has been attracting great interest due to the high operating and capital costs of the cryogenic distillation traditionally practiced. This search for novel economical ways to separate olefins from paraffins by adsorptive processes has motivated the appearance of improved materials. The trend of developing new materials, such as metal–organic frameworks (MOF) and the challenge of improving the existing technologies, such as pressure swing adsorption (PSA) and simulated moving bed (SMB) leave the horizon open for new alternatives. In the present work, PSA and SMB in gas phase were tested to produce ethylene at high purity on Cu-BTC MOF in beads form. For the first time, the olefin/paraffin separation by SMB technology, using a MOF as adsorbent, was achieved. Both technologies were successfully implemented experimentally and simulated. In the best cycle performed by VPSA for the 20/80 ethane/ethylene feed composition, the ethylene was obtained with a purity of 98.0% at a recovery of 70.2% and a productivity per unit mass of stationary phase of 1.55 molC2 h−1 kg−1adsorbent. Additionally, for the 50/50 ethane/ethylene mixture only 43.2% of the ethylene is recovered at a purity of 95.4% and a productivity of 0.52 molC2 h−1 kg1adsorbent. In the two cycles performed by SMB, to separate 39/61 ethane/ethylene mixture, ethylene was obtained with a purity of 95%, a recovery above 90% and productivity between 0.50 and 0.66 molC2 h−1 kg−1adsorbent. All the experiments were well predicted by the axial dispersion flow model with the LDF approximation.

Keywords

Gas phase SMB PSA Olefin Adsorption MOF 

Notes

Acknowledgements

The authors acknowledge financial support provided by: project FCOMP-01-0124-FEDER-027458 (Ref. FCT EXCL/QEQPRS/0308/2012) financed by Fundação para a Ciência e a Tecnologia (FCT, Portugal) and FEDER under Programme COMPETE; project “AIProcMat@N2020 - Advanced Industrial Processes and Materials for a Sustainable Northern Region of Portugal 2020”, with the reference NORTE-01-0145-FEDER-000006, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and of Project POCI-01-0145-FEDER-006984 – Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia.

Supplementary material

10450_2017_9930_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5235 KB)

References

  1. AFPM: What is a Cracker and Why Should I Care? http://education.afpm.org/petrochemicals/what-is-a-cracker-and-why-should-i-care/ (2016). Accessed 20 Jun 2016
  2. Aguado, S., Bergeret, G., Daniel, C., Farrusseng, D.: Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite a. J. Am. Chem. Soc. 134(36), 14635–14637 (2012).  https://doi.org/10.1021/Ja305663k CrossRefGoogle Scholar
  3. Ahmed, M.J., Theydan, S.K.: Isotherms and thermodynamics studies for binary adsorption of methane and ethane on 4A molecular sieve zeolite. J. Porous Mater. 21(3), 303–310 (2014).  https://doi.org/10.1007/s10934-013-9775-2 CrossRefGoogle Scholar
  4. Alaerts, L., Kirschhock, C.E.A., Maes, M., van der Veen, M.A., Finsy, V., Depla, A., Martens, J.A., Baron, G.V., Jacobs, P.A., Denayer, J.E.M., De Vos, D.E.: Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew Chem. Int. Ed. 46(23), 4293–4297 (2007).  https://doi.org/10.1002/anie.200700056 CrossRefGoogle Scholar
  5. Anson, A., Wang, Y., Lin, C.C.H., Kuznicki, T.M., Kuznicki, S.M.: Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 63(16), 4171–4175 (2008).  https://doi.org/10.1016/j.ces.2008.05.038 CrossRefGoogle Scholar
  6. Babarao, R., Hu, Z.Q., Jiang, J.W., Chempath, S., Sandler, S.I.: Storage and separation of CO2 and CH4 in silicalite, C-168 schwarzite, and IRMOF-1: a comparative study from monte carlo simulation. Langmuir 23(2), 659–666 (2007).  https://doi.org/10.1021/la062289p CrossRefGoogle Scholar
  7. Barcia, P.S., Zapata, F., Silva, J.A.C., Rodrigues, A.E., Chen, B.L.: Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. J. Phys. Chem. B. 111(22), 6101–6103 (2007).  https://doi.org/10.1021/jp0721898 CrossRefGoogle Scholar
  8. BASF: Polymer Grade Ethylene. http://www.basf-ypc.com.cn/en/products_services/cracker_aromatics/polymer_grade_ethylene (2014). Accessed 04 Mar 2016
  9. Bastin, L., Barcia, P.S., Hurtado, E.J., Silva, J.A.C., Rodrigues, A.E., Chen, B.L.: A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. J. Phys. Chem. C 112(5), 1575–1581 (2008).  https://doi.org/10.1021/jp077618g CrossRefGoogle Scholar
  10. Bentley, J., Huang, Q.L., Kawajiri, Y., Eic, M., Seidel-Morgenstern, A.: Optimizing the separation of gaseous enantiomers by simulated moving bed and pressure swing adsorption. Adsorption 17(1), 159–170 (2011).  https://doi.org/10.1007/s10450-010-9299-x CrossRefGoogle Scholar
  11. Bezus, A.G., Kiselev, A.V., Sedlacek, Z., Du, P.Q.: Adsorption of ethane and ethylene on X-zeolites containing Li+, Na+, K+, Rb + and Cs + cations. Trans. Faraday Soc. 67(578), 468–482 (1971).  https://doi.org/10.1039/Tf9716700468 CrossRefGoogle Scholar
  12. Bezus, A.G., Kiselev, A.V., Du, P.Q.: The influence of size, charge and concentration of exchange cations on the adsorption of ethane and ethylene by zeolites. J. Colloid Interface Sci. 40(2), 223–232 (1972).  https://doi.org/10.1016/0021-9797(72)90012-4 CrossRefGoogle Scholar
  13. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. Wiley, Hoboken (2007)Google Scholar
  14. Bloch, E.D., Queen, W.L., Krishna, R., Zadrozny, J.M., Brown, C.M., Long, J.R.: Hydrocarbon Separations in a metal-organic framework with open iron(II) coordination sites. Science 335(6076), 1606–1610 (2012).  https://doi.org/10.1126/science.1217544 CrossRefGoogle Scholar
  15. Broughton, D.B., Gerhold, C.G.: Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets. US Patent (1961)Google Scholar
  16. Campo, M.C., Ribeiro, A.M., Ferreira, A., Santos, J.C., Lutz, C., Loureiro, J.M., Rodrigues, A.E.: New 13X zeolite for propylene/propane separation by vacuum swing adsorption. Sep. Purif. Technol. 103, 60–70 (2013).  https://doi.org/10.1016/j.seppur.2012.10.009 CrossRefGoogle Scholar
  17. Campo, M.C., Baptista, M.C., Ribeiro, A.M., Ferreira, A., Santos, J.C., Lutz, C., Loureiro, J.M., Rodrigues, A.E.: Gas phase SMB for propane/propylene separation using enhanced 13X zeolite beads. Adsorption 20(1), 61–75 (2014).  https://doi.org/10.1007/s10450-013-9549-9 CrossRefGoogle Scholar
  18. Chen, B.L., Liang, C.D., Yang, J., Contreras, D.S., Clancy, Y.L., Lobkovsky, E.B., Yaghi, O.M., Dai, S.: A microporous metal-organic framework for gas-chromatographic separation of alkanes. Angew Chem. Int. Ed. 45(9), 1390–1393 (2006).  https://doi.org/10.1002/anie.200502844 CrossRefGoogle Scholar
  19. Chui, S.S.Y., Lo, S.M.F., Charmant, J.P.H., Orpen, A.G., Williams, I.D.: A chemically functionalizable nanoporous material [Cu3(TMA)(2)(H2O)(3)](n). Science 283(5405), 1148–1150 (1999).  https://doi.org/10.1126/science.283.5405.1148 CrossRefGoogle Scholar
  20. Cruz, F.J.A.L., Esteves, I.A.A.C., Mota, J.P.B.: Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: langmuirian analysis and molecular simulations. Colloid Surf. A 357(1–3), 43–52 (2010).  https://doi.org/10.1016/j.colsurfa.2009.09.002 CrossRefGoogle Scholar
  21. Da Silva, F.A., Rodrigues, A.E.: Propylene/propane separation by pressure swing adsorption. Adsorpt. Sci. Technol. 2000:537–541 (2000).  https://doi.org/10.1142/9789812793331_0107 CrossRefGoogle Scholar
  22. Da Silva, F.A., Rodrigues, A.E.: Propylene/propane separation by vacuum swing adsorption using 13X zeolite. Aiche J. 47(2), 341–357 (2001a).  https://doi.org/10.1002/aic.690470212 CrossRefGoogle Scholar
  23. Da Silva, F.A., Rodrigues, A.E.: Vacuum swing adsorption for propylene/propane separation with 4A zeolite. Ind. Eng. Chem. Res. 40(24), 5758–5774 (2001b).  https://doi.org/10.1021/Ie0008732 CrossRefGoogle Scholar
  24. Da Silva, F.A., Silva, J.A., Rodrigues, A.E.: A general package for the simulation of cyclic adsorption processes. Adsorption 5(3), 229–244 (1999).  https://doi.org/10.1023/A:1008974908427 CrossRefGoogle Scholar
  25. Danner, R.P., Choi, E.C.F.: Mixture adsorption equilibria of ethane and ethylene on 13x molecular-sieves. Ind. Eng. Chem. Fund. 17(4), 248–253 (1978).  https://doi.org/10.1021/I160068a003 CrossRefGoogle Scholar
  26. Do, D.D., Do, H.D.: Non-isothermal effects on adsorption kinetics of hydrocarbon mixtures in activated carbon. Sep. Purif. Technol. 20(1), 49–65 (2000).  https://doi.org/10.1016/S1383-5866(00)00062-9 CrossRefGoogle Scholar
  27. Dybtsev, D.N., Chun, H., Yoon, S.H., Kim, D., Kim, K.: Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. J. Am. Chem. Soc. 126(1), 32–33 (2004).  https://doi.org/10.1021/ja038678c CrossRefGoogle Scholar
  28. Ferreira, A.F.P., Santos, J.C., Plaza, M.G., Lamia, N., Loureiro, J.M., Rodrigues, A.E.: Suitability of Cu-BTC extrudates for propane-propylene separation by adsorption processes. Chem. Eng. J. 167(1), 1–12 (2011).  https://doi.org/10.1016/j.cej.2010.07.041 CrossRefGoogle Scholar
  29. Finsy, V., Verelst, H., Alaerts, L., De Vos, D., Jacobs, P.A., Baron, G.V., Denayer, J.F.M.: Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47. J. Am. Chem. Soc. 130(22), 7110–7118 (2008).  https://doi.org/10.1021/ja800686c CrossRefGoogle Scholar
  30. Fischer, M., Gomes, J.R.B., Froba, M., Jorge, M.: Modeling adsorption in metal-organic frameworks with open metal sites: propane/propylene separations. Langmuir 28(22), 8537–8549 (2012).  https://doi.org/10.1021/La301215y CrossRefGoogle Scholar
  31. Gomes, P.S., Lamia, N., Rodrigues, A.E.: Design of a gas phase simulated moving bed for propane/propylene separation. Chem. Eng. Sci. 64(6), 1336–1357 (2009).  https://doi.org/10.1016/j.ces.2008.11.022 CrossRefGoogle Scholar
  32. Granato, M.A., Martins, V.D., Santos, J.C., Jorge, M., Rodrigues, A.E.: From molecules to processes: molecular simulations applied to the design of simulated moving bed for ethane/ethylene separation. Can. J. Chem. Eng. 92(1), 148–155 (2014).  https://doi.org/10.1002/Cjce.21805 CrossRefGoogle Scholar
  33. Grande, C.A., Rodrigues, A.E.: Propane/propylene separation by pressure swing adsorption using zeolite 4A. Ind. Eng. Chem. Res. 44(23), 8815–8829 (2005).  https://doi.org/10.1021/Ie050671b CrossRefGoogle Scholar
  34. Grande, C.A., Poplow, F., Rodrigues, A.E.: Vacuum pressure swing adsorption to produce polymer-grade propylene. Sep. Sci. Technol. 45(9), 1252–1259 (2010).  https://doi.org/10.1080/01496391003652767 CrossRefGoogle Scholar
  35. Grande, C.A., Lind, A., Vistad, Ø, Akporiaye, D.: Olefin–paraffin separation using calcium-ETS-4. Ind. Eng. Chem. Res. 53(40), 15522–15530 (2014).  https://doi.org/10.1021/ie5004703 CrossRefGoogle Scholar
  36. ICIS: Ethylene Production and Manufacturing Process.. http://www.icis.com/resources/news/2007/11/05/9075778/ethylene-production-and-manufacturing-process/ (2007a). Accessed 20 Jun 2016
  37. ICIS: Ethylene Uses and Market Data. http://www.icis.com/resources/news/2007/11/05/9075777/ethylene-uses-and-market-data/ (2007b). Accessed 20 Jun 2016
  38. Jiang, J.W., Sandler, S.I.: Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1. Langmuir 22(13), 5702–5707 (2006).  https://doi.org/10.1021/la060506g CrossRefGoogle Scholar
  39. Jorge, M., Lamia, N., Rodrigues, A.E.: Molecular simulation of propane/propylene separation on the metal-organic framework CuBTC. Colloid Surf. A 357(1–3), 27–34 (2010).  https://doi.org/10.1016/j.colsurfa.2009.08.025 CrossRefGoogle Scholar
  40. Jorge, M., Fischer, M., Gomes, J.R.B., Siquet, C., Santos, J.C., Rodrigues, A.E.: Accurate model for predicting adsorption of olefins and paraffins on MOFs with open metal sites. Ind. Eng. Chem. Res. 53(40), 15475–15487 (2014).  https://doi.org/10.1021/ie500310c CrossRefGoogle Scholar
  41. Juza, M., Di Giovanni, O., Biressi, G., Schurig, V., Mazzotti, M., Morbidelli, M.: Continuous enantiomer separation of the volatile inhalation anesthetic enflurane with a gas chromatographic simulated moving bed unit. J. Chromatogr. A 813(2), 333–347 (1998).  https://doi.org/10.1016/S0021-9673(98)00322-7 CrossRefGoogle Scholar
  42. Keskin, S., Sholl, D.S.: Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111(38), 14055–14059 (2007).  https://doi.org/10.1021/jp075290l CrossRefGoogle Scholar
  43. Kolmetz, K.: Ethylene splitter (Engineering Design Guideline).. http://kolmetz.com/pdf/EDG/ENGINEERING_DESIGN_GUIDELINE_ethylene_splitter_towers_Rev01web.pdf (2012). Accessed 21 Jun 2016
  44. Lamia, N., Wolff, L., Leflaive, P., Gomes, P.S., Grande, C.A., Rodrigues, A.E.: Propane/propylene separation by simulated moving bed I. Adsorption of propane, propylene and isobutane in pellets of 13X zeolite. Sep. Sci. Technol. 42(12), 2539–2566 (2007).  https://doi.org/10.1080/01496390701515219 CrossRefGoogle Scholar
  45. Lamia, N., Jorge, M., Granato, M.A., Paz, F.A.A., Chevreau, H., Rodrigues, A.E.: Adsorption of propane, propylene and isobutane on a metal-organic framework: molecular simulation and experiment. Chem. Eng. Sci. 64(14), 3246–3259 (2009).  https://doi.org/10.1016/j.ces.2009.04.010 CrossRefGoogle Scholar
  46. Martins, V.D., Ribeiro, A.M., Plaza, M.G., Santos, J.C., Loureiro, J.M., Ferreira, A., Rodrigues, A.E.: Gas-phase simulated moving bed: propane/propylene separation on 13X zeolite. J. Chromatogr. A 1423, 136–148 (2015a).  https://doi.org/10.1016/j.chroma.2015.10.038 CrossRefGoogle Scholar
  47. Martins, V.F.D., Ribeiro, A.M., Ferreira, A., Lee, U.H., Hwang, Y.K., Chang, J.S., Loureiro, J.M., Rodrigues, A.E.: Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF. Sep. Purif. Technol. 149, 445–456 (2015b).  https://doi.org/10.1016/j.seppur.2015.06.012 CrossRefGoogle Scholar
  48. Martins, V.F.D., Ribeiro, A.M., Santos, J.C., Loureiro, J.M., Gleichmann, K., Ferreira, A., Rodrigues, A.E.: Development of gas-phase smb technology for light olefin/paraffin separations. Aiche J. 62(7), 2490–2500 (2016).  https://doi.org/10.1002/aic.15238 CrossRefGoogle Scholar
  49. Mazzotti, M., Storti, G., Morbidelli, M.: Robust design of countercurrent adsorption separation processes: 2. Multicomponent systems. Aiche J. 40(11), 1825–1842 (1994).  https://doi.org/10.1002/aic.690401107 CrossRefGoogle Scholar
  50. Mazzotti, M., Baciocchi, R., Storti, G., Morbidelli, M.: Vapor-phase SMB adsorptive separation of linear/nonlinear paraffins. Ind. Eng. Chem. Res. 35(7), 2313–2321 (1996).  https://doi.org/10.1021/Ie950766l CrossRefGoogle Scholar
  51. McKetta, J.J., Cunningham, W.A.: Encyclopedia of chemical processing and design: Volume 20—Ethanol as Fuel: options: advantages, and disadvantages to exhaust stacks: cost. M. Dekker, New York (1976)Google Scholar
  52. Minceva, M.: Separation/isomerization of xylenes by simulated moving bed technology. University of Porto, Porto (2004)Google Scholar
  53. Mofarahi, M., Salehi, S.M.: Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption 19(1), 101–110 (2013).  https://doi.org/10.1007/s10450-012-9423-1 CrossRefGoogle Scholar
  54. Mofarahi, M., Sadrameli, M., Towfighi, J.: Four-bed vacuum pressure swing adsorption process for propylene/propane separation. Ind. Eng. Chem. Res. 44(5), 1557–1564 (2005).  https://doi.org/10.1021/Ie034016k CrossRefGoogle Scholar
  55. Nakahara, T., Hirata, M., Omori, T.: Adsorption of hydrocarbons on carbon molecular-sieve. J. Chem. Eng. Data 19(4), 310–313 (1974).  https://doi.org/10.1021/Je60063a018 CrossRefGoogle Scholar
  56. Narin, G., Martins, V.F.D., Campo, M., Ribeiro, A.M., Ferreira, A., Santos, J.C., Schumann, K., Rodrigues, A.E.: Light olefins/paraffins separation with 13X zeolite binderless beads. Sep. Purif. Technol. 133, 452–475 (2014).  https://doi.org/10.1016/j.seppur.2014.06.060 CrossRefGoogle Scholar
  57. Newalkar, B.L., Choudary, N.V., Turaga, U.T., Vijayalakshmi, R.P., Kumar, P., Komarneni, S., Bhat, T.S.G.: Adsorption of light hydrocarbons on HMS type mesoporous silica. Microporous Mesoporous Mater. 65(2–3), 267–276 (2003).  https://doi.org/10.1016/j.micromeso.2003.08.008 CrossRefGoogle Scholar
  58. Pan, L., Olson, D.H., Ciemnolonski, L.R., Heddy, R., Li, J.: Separation of hydrocarbons with a microporous metal-organic framework. Angew Chem. Int. Ed. 45(4), 616–619 (2006a).  https://doi.org/10.1002/anie.200503503 CrossRefGoogle Scholar
  59. Pan, L., Parker, B., Huang, X.Y., Olson, D.H., Lee, J., Li, J.: Zn(tbip) (H(2)tbip = 5-tert-butyl isophthalic acid): a highly stable guest-free microporous metal organic framework with unique gas separation capability. J. Am. Chem. Soc. 128(13), 4180–4181 (2006b).  https://doi.org/10.1021/ja057667b CrossRefGoogle Scholar
  60. Park, J.H., Han, S.S., Kim, J.N., Cho, S.H.: Vacuum swing adsorption process for the separation of ethylene/ethane with AgNO3/clay adsorbent. Korean J. Chem. Eng. 21(1), 236–245 (2004).  https://doi.org/10.1007/Bf02705404 CrossRefGoogle Scholar
  61. Plaza, M.G., Ribeiro, A.M., Ferreira, A., Santos, J.C., Lee, U.H., Chang, J.S., Loureiro, J.M., Rodrigues, A.E.: Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. Sep. Purif. Technol. 90, 109–119 (2012).  https://doi.org/10.1016/j.seppur.2012.02.023 CrossRefGoogle Scholar
  62. Poling, B., Prausnitz, J., Connell, J.O.: The properties of gases and liquids. McGraw-Hill Education, New York (2000)Google Scholar
  63. Production: Growth is the Norm. In: Chemical and Engineering News, vol. 84. pp. 59–236. (2006)Google Scholar
  64. PSE: gProms - The world’s leading Advanced Process Modelling platform. https://www.psenterprise.com/products/gproms (2017). Accessed 18 Aug 2017
  65. Ram, A.: Fundamentals of polymer engineering. Plenum Press, New York (1997)CrossRefGoogle Scholar
  66. Rege, S.U., Yang, R.T.: Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chem. Eng. Sci. 57(7), 1139–1149 (2002).  https://doi.org/10.1016/S0009-2509(01)00440-7 CrossRefGoogle Scholar
  67. Rege, S.U., Padin, J., Yang, R.T.: Olefin/paraffin separations by adsorption: pi-complexation vs. kinetic separation. Aiche J. 44(4), 799–809 (1998).  https://doi.org/10.1002/aic.690440405 CrossRefGoogle Scholar
  68. Shi, M., Lin, C.C.H., Kuznicki, T.M., Hashisho, Z., Kuznicki, S.M.: Separation of a binary mixture of ethylene and ethane by adsorption on Na-ETS-10. Chem. Eng. Sci. 65(11), 3494–3498 (2010).  https://doi.org/10.1016/j.ces.2010.02.048 CrossRefGoogle Scholar
  69. Shi, M., Avila, A.M., Yang, F., Kuznicki, T.M., Kuznicki, S.M.: High pressure adsorptive separation of ethylene and ethane on Na-ETS-10. Chem. Eng. Sci. 66(12), 2817–2822 (2011).  https://doi.org/10.1016/j.ces.2011.03.046 CrossRefGoogle Scholar
  70. Sircar, S.: Pressure swing adsorption. Ind. Eng. Chem. Res. 41(6), 1389–1392 (2002).  https://doi.org/10.1021/ie0109758 CrossRefGoogle Scholar
  71. Sivakumar, S.V., Rao, D.P.: Adsorptive separation of gas mixtures: mechanistic view, sharp separation and process intensification. Chem. Eng. Process. 53, 31–52 (2012).  https://doi.org/10.1016/j.cep.2011.12.012 CrossRefGoogle Scholar
  72. Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent (1960)Google Scholar
  73. Skarstrom, C.W.: Oxygen concentration process. US Patent (1966)Google Scholar
  74. Storti, G., Mazzotti, M., Furlan, L.T., Morbidelli, M., Carra, S.: Performance of a 6-Port simulated moving-bed pilot-plant for vapor-phase adsorption separations. Sep. Sci. Technol. 27(14), 1889–1916 (1992).  https://doi.org/10.1080/01496399208019456 CrossRefGoogle Scholar
  75. Tondeur, D., Wankat, P.C.: Gas purification by pressure swing adsorption. Sep. Purif. Method 14(2), 157–212 (1985).  https://doi.org/10.1080/03602548508068420 CrossRefGoogle Scholar
  76. van Miltenburg, A., Zhu, W., Kapteijn, F., Moulijn, J.A.: Adsorptive separation of light olefin/paraffin mixtures. Chem. Eng. Res. Des. 84(A5), 350–354 (2006).  https://doi.org/10.1205/Cherd05021 CrossRefGoogle Scholar
  77. Van Assche, T.R.C., Duerinck, T., Gutierrez Sevillano, J.J., Calero, S., Baron, G.V., Denayer, J.F.M.: High adsorption capacities and two-step adsorption of polar adsorbates on copper benzene-1,3,5-tricarboxylate metal-organic framework. J. Phys. Chem. C 117(35), 18100–18111 (2013).  https://doi.org/10.1021/jp405509m CrossRefGoogle Scholar
  78. Wang, Q.M., Shen, D.M., Bulow, M., Lau, M.L., Deng, S.G., Fitch, F.R., Lemcoff, N.O., Semanscin, J.: Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater 55(2), 217–230 (2002).  https://doi.org/10.1016/S1387-1811(02)00405-5 CrossRefGoogle Scholar
  79. Wang, S.Y., Yang, Q.Y., Zhong, C.L.: Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC: a computational study. Sep. Purif. Technol. 60(1), 30–35 (2008).  https://doi.org/10.1016/j.seppur.2007.07.050 CrossRefGoogle Scholar
  80. Yang, Q.Y., Zhong, C.L.: Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. J. Phys. Chem. B. 110(36), 17776–17783 (2006).  https://doi.org/10.1021/jp062723w CrossRefGoogle Scholar
  81. Yang, Q.Y., Xue, C.Y., Zhong, C.L., Chen, J.F.: Molecular simulation of separation of CO2 from flue gases in Cu-BTC metal-organic framework. Aiche J. 53(11), 2832–2840 (2007).  https://doi.org/10.1002/aic.11298 CrossRefGoogle Scholar
  82. Zhang, L., Wang, Q., Wu, T., Liu, Y.C.: Understanding adsorption and interactions of alkane isomer mixtures in isoreticular metal-organic frameworks. Chem. Eur. J. 13(22), 6387–6396 (2007).  https://doi.org/10.1002/chem.200700205 CrossRefGoogle Scholar
  83. Zimmermann, H., Walzl, R.: Ethylene. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vanessa F. D. Martins
    • 1
  • Ana M. Ribeiro
    • 1
  • Jong-San Chang
    • 2
    • 3
  • José M. Loureiro
    • 1
  • Alexandre Ferreira
    • 1
  • Alírio E. Rodrigues
    • 1
  1. 1.Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical EngineeringUniversity of PortoPortoPortugal
  2. 2.Catalysis Center for Molecular EngineeringKorea Research Institute of Chemical Technology (KRICT)DaejeonRepublic of Korea
  3. 3.Department of ChemistrySungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations