Advertisement

Adsorption

, Volume 24, Issue 2, pp 147–156 | Cite as

Chromium(VI) removal using in-situ nitrogenized activated carbon prepared from Brewers’ spent grain

  • S. R. H. Vanderheyden
  • K. Vanreppelen
  • J. Yperman
  • R. Carleer
  • S. Schreurs
Article
  • 232 Downloads

Abstract

In-situ nitrogenised activated carbons (ACs) are prepared from brewers’ spent grain (BSG) using different activation procedures. Cr(VI) adsorption (10 mg/L, pH 2) on these ACs is compared to adsorption on commercial Norit GAC 1240 and Filtrasorb F400. The adsorption isotherms for both Cr(VI) and Cr total (Crtot) are determined for each AC, of which the best performing ones are chosen for kinetic experiments. The adsorption mechanism towards Cr(VI) is accompanied by its reduction to Cr(III), removing almost all Cr(VI) even at low dosages for all tested ACs. An optimal dosage (0.75 g/L) is found for each AC. For the best performing AC this dosage results in removal rates of over 99% of Cr(VI) and 88% of Crtot. The amount of reduced Cr(VI) increases with AC dosage, resulting in a higher Cr(III) equilibrium concentration above this optimal dosage. The redox reaction is more dominant in the commercial ACs. However, a faster removal rate for the ACBSGs for both Cr(VI) and Crtot is demonstrated.

Keywords

Activated carbon Brewers’ spent grain Chromium Isotherm Kinetics 

Notes

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

10450_2017_9929_MOESM1_ESM.xlsx (16 kb)
Supplementary material 1 (XLSX 15 KB)

References

  1. ASTM. D6832-02 Standard Test Method for the Determination of Hexavalent Chromium in Workplace Air by Ion Chromatography and Spectrophotometric Measurement Using 1,5-Diphenylcarbazide. ASTM, West Conshohocken (2002)Google Scholar
  2. Bagreev, A., Bashkova, S., Bandosz, T.J.: Adsorption of SO2 on activated carbons: the effect of nitrogen functionality and pore sizes. Langmuir 18, 1257–1264 (2002)CrossRefGoogle Scholar
  3. Bagreev, A., Menendez, J.A., Dukhno, I., Tarasenko, Y., Bandosz, T.J.: Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon 42, 469–476 (2004)CrossRefGoogle Scholar
  4. Bandosz, T.J., Ania, C.O.: Surface chemistry of activated carbons and its characterization. In: Bandosz T.J. (eds.) Activated Carbon Surfaces in Environmental Remediation, pp. 159–229. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  5. Beker, U., Ganbold, B., Dertli, H., Gülbayir, D.D.: Adsorption of phenol by activated carbons: influence of activation methods and solution ph. Energy Convers. Manag. 51, 235–240 (2010)CrossRefGoogle Scholar
  6. Bhattacharya, A.K., Naiya, T.K., Mandal, S.N., Das, S.K.: Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J. 137, 529–541 (2008)Google Scholar
  7. Biniak, S., Szymanski, G., Siedlewski, J., Swiatkowski, A.: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810 (1997)CrossRefGoogle Scholar
  8. Cook, D.: Brewers’ Grains: Opportunities about. Brewers’ guardian, Advantage Publishing Ltd., Vol. November/December 2011 (2011)Google Scholar
  9. Deconinck, D., Capon, L., Clerinx, B., Couder, J.: Indicatoren Voor Duurzame Ontwikkeling in de Belgische Industrie (2001)Google Scholar
  10. Di Natale, F., Lancia, A., Molino, A., Musmarra, D.: Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char. J. Hazard. Mater. 145, 381–390 (2007)CrossRefGoogle Scholar
  11. Duranoglu, D.T., Trochimczuk, A.W., Beker, U.: Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem. Eng. J. 187, 193–202 (2012)CrossRefGoogle Scholar
  12. El Nemr, A., El-Sikaily, A., Khaled, A., Abdelwahab, O.: Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga pterocladia capillacea and its activated carbon. Arabian J. Chem. 8, 105–117 (2015)CrossRefGoogle Scholar
  13. Gottipati, R., Mishra, S.: Preparation of microporous activated carbon from aegle marmelos fruit shell and its application in removal of chromium(VI) from aqueous phase. J. Ind. Eng. Chem. 36, 355–363 (2016)CrossRefGoogle Scholar
  14. Gueye, M., Richardson, Y., Kafack, F.T., Blin, J.: High efficiency activated carbons from african biomass residues for the removal of chromium(VI) from wastewater. J. Environ. Chem. Eng. 2, 273–281 (2014)CrossRefGoogle Scholar
  15. Hamadi, N.K., Chen, X.D., Farid, M.M., Lu, M.G.Q.: Adsorption kinetics for the removal of chromium(VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem. Eng. J. 84, 95–105 (2001)CrossRefGoogle Scholar
  16. Hameed, B.H., Rahman, A.A.: Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 160, 576–581 (2008)CrossRefGoogle Scholar
  17. Hayden, R.A.: Method for reactivating nitrogen-treated carbon catalysts. Google Patents (1995)Google Scholar
  18. Ho, Y.S., McKay, G.: Kinetic models for the sorption of dye from aqueous solution by wood. Process Saf. Environ. Prot. 76, 183–191 (1998)CrossRefGoogle Scholar
  19. Karthikeyan, T., Rajgopal, S., Miranda, L.R.: Chromium(VI) adsorption from aqueous solution by hevea brasilinesis sawdust activated carbon. J. Hazard. Mater. 124, 192–199 (2005)CrossRefGoogle Scholar
  20. Kumar, A., Jena, H.M.: Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2. Process Saf. Environ. Prot. 109, 63–71 (2017)CrossRefGoogle Scholar
  21. Lagergren, S.Y.: Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)Google Scholar
  22. Limousy, L., Ghouma, I., Ouederni, A., Jeguirim, M.: Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environ. Sci. Pollut. Res. 24, 9993–10004 (2017)CrossRefGoogle Scholar
  23. Lorenc-Grabowska, E., Gryglewicz, G., Diez, M.A.: Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons. Fuel 114, 235–243 (2013)CrossRefGoogle Scholar
  24. Mahmood, A.S.N., Brammer, J.G., Hornung, A., Steele, A., Poulston, S.: The intermediate pyrolysis and catalytic steam reforming of brewers spent grain. J. Anal. Appl. Pyrol. 103, 328–342 (2013)CrossRefGoogle Scholar
  25. Marsh, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier Science & Technology books, New York (2006)Google Scholar
  26. Matzner, S., Boehm, H.P.: Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbon. Carbon 36, 1697–1709 (1998)CrossRefGoogle Scholar
  27. Miretzky, P., Cirelli, A.F.: Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J. Hazard. Mater. 180, 1–19 (2010)CrossRefGoogle Scholar
  28. Mohan, D., Pittman, C.U. Jr.: Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 137, 762–811 (2006)CrossRefGoogle Scholar
  29. Mussatto, S.I., Dragone, G., Roberto, I.C.: Brewer’s spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43, 1–14 (2006)CrossRefGoogle Scholar
  30. Mussatto, S.I., Fernandes, M., Rocha, G.J.M., Orfao, J.J.M.T., Teixeira, J.A., Roberto, I.C.: Production, characterization and application of activated carbon from brewer’s spent grain lignin. Bioresour. Technol. 101, 2450–2457 (2010)CrossRefGoogle Scholar
  31. Ng, Z.-G., Lim, J.-W., Daud, H., Ng, S.-L., Bashir, M.J.K.: Reassessment of adsorption–reduction mechanism of hexavalent chromium in attaining practicable mechanistic kinetic model. Process Saf. Environ. Prot. 102, 98–105 (2016)CrossRefGoogle Scholar
  32. Nieto-Márquez, A., Pinedo-Flores, A., Picasso, G., Atanes, E., Sun Kou, R.: Selective adsorption of pb2+, Cr3+ and Cd2+ mixtures on activated carbons prepared from waste tires. J. Environ. Chem. Eng. 5, 1060–1067 (2017)CrossRefGoogle Scholar
  33. Park, D., Yun, Y.-S., Park, J.M.: XAS and XPS studies on chromium-binding groups of biomaterial during Cr(VI) biosorption. J. Colloid Interface Sci. 317, 54–61 (2008)CrossRefGoogle Scholar
  34. Pradhan, N., Rene, E.R., Lens, P.N.L., Dipasquale, L., D’Ippolito, G., Fontana, A., Panico, A., Esposito G.: Adsorption behaviour of lactic acid on granular activated carbon and anionic resins: Thermodynamics, Isotherms and Kinetic Studies. Energies 10, 665 (2017)CrossRefGoogle Scholar
  35. Qiu, H., Pan, B.-C., Zhang, Q., Zhang, W., Zhang, Q.-X.: Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A 10, 716–724 (2009)CrossRefGoogle Scholar
  36. Rai, M.K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R.S., Rai, B.N.: Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resour. Effic. Technol. 2(Supplement 1), S63–S70 (2016)Google Scholar
  37. Reddad, Z., Gerente, C., Andres, Y., Cloirec, P.L.: Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp. Environ. Technol. 24, 257–264 (2003)CrossRefGoogle Scholar
  38. Rivera-Utrilla, J., Sánchez-Polo, M.: Adsorption of Cr(III) on ozonised activated carbon. Importance of cπ—cation interactions. Water Res. 37, 3335–3340 (2003)CrossRefGoogle Scholar
  39. Tseng, R.-L., Wu, F.-C., Juang, R.-S.: Characteristics and applications of the lagergren’s first-order equation for adsorption kinetics. J. Taiwan Inst. Chem. Eng. 41, 661–669 (2010)CrossRefGoogle Scholar
  40. U.S. Department of Labor - Occupational Safety and Health Administration. Hexavalent Chromium. U.S. Department of Labor - Occupational Safety and Health Administration, Washington, D.C. (2009)Google Scholar
  41. Valix, M., Cheung, W.H., Zhang, K.: Role of heteroatoms in activated carbon for removal of hexavalent chromium from wastewaters. J. Hazard. Mater. 135, 395–405 (2006)CrossRefGoogle Scholar
  42. Vanderheyden, S.R.H., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., Carleer, R.: Adsorption of cesium on different types of activated carbon. J. Radioanal. Nucl. Chem. 310, 301–310 (2016)CrossRefGoogle Scholar
  43. Vanreppelen, K., Vanderheyden, S., Kuppens, T., Schreurs, S., Yperman, J., Carleer, R.: Activated carbon from pyrolysis of brewer’s spent grain: production and adsorption properties. Waste Manag. Res. 32, 634–645 (2014)CrossRefGoogle Scholar
  44. Vlaamse Milieumaatschappij. Zware Metalen in het Grondwater in Vlaanderen. Vlaamse Milieumaatschappij, Aalst (2015)Google Scholar
  45. Wanassi, B., Ben Hariz, I., Ghimbeu, C.M., Vaulot, C., Ben Hassen, M., Jeguirim, M.: Carbonaceous adsorbents derived from textile cotton waste for the removal of alizarin s dye from aqueous effluent: kinetic and equilibrium studies. Environ. Sci. Pollut. Res. 24, 10041–10055 (2017)CrossRefGoogle Scholar
  46. Weber, W.J., Morris, J.C.: Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31–59 (1963)Google Scholar
  47. Xiros, C., Christakopoulos, P.: Biotechnological potential of brewers spent grain and its recent applications. Waste Biomass Valoriz. 2, 213–232 (2012)CrossRefGoogle Scholar
  48. Yang, G., Chen, H., Qin, H., Feng, Y.: Amination of activated carbon for enhancing phenol adsorption: effect of nitrogen-containing functional groups. Appl. Surf. Sci. 293, 299–305 (2014)CrossRefGoogle Scholar
  49. Zhang, Y.-J., Ou, J.-L., Duan, Z.-K., Xing, Z.-J., Wang, Y.: Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids Surf. A 481, 108–116 (2015)CrossRefGoogle Scholar
  50. Zhang, J., Chen, S., Zhang, H., Wang, X.: Removal behaviors and mechanisms of hexavalent chromium from aqueous solution by cephalosporin residue and derived chars. Bioresour. Technol. 238, 484–491 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centre for Environmental Sciences, Research Group of Analytical and Applied ChemistryHasselt UniversityDiepenbeekBelgium
  2. 2.Centre for Environmental Sciences, Research Group of Nuclear TechnologyHasselt UniversityDiepenbeekBelgium

Personalised recommendations