Advertisement

Adsorption

, Volume 24, Issue 1, pp 11–27 | Cite as

Physical meaning of the parameters used in fractal kinetic and generalised adsorption models of Brouers–Sotolongo

  • Taher Selmi
  • Mongi Seffen
  • Habib Sammouda
  • Sandrine Mathieu
  • Jacek Jagiello
  • Alain Celzard
  • Vanessa Fierro
Article

Abstract

The aim of the present study was to clarify the physical meaning of the parameters used in fractal kinetic and generalised isotherm models of Brouers–Sotolongo. For this purpose, adsorption of methylene blue (MB) and methyl orange (MO) onto four activated carbons (ACs) was carried out. These ACs were characterised in terms of composition, surface area, pore volumes and pore size distributions, carbon nanotexture and surface chemistry. Adsorption isotherms were carried out at 25 °C, and at pH 2.5 and 8 for MO and MB, respectively, and fitted with Langmuir, Freundlich, Jovanovich, Hill–Sips, Brouers–Sotolongo, Brouers–Gaspard and General Brouers–Sotolongo (GBS) models. Adsorption kinetics were fitted by traditional pseudo-first and pseudo-second order models and compared to the Brouers–Sotolongo (BSf) fractal kinetic model. GBS and BSf were found to be the best models describing adsorption isotherms and kinetics, respectively. This finding suggests that MB and MO adsorption is probabilistic and closely correlated to the heterogeneous character of the adsorbent surface. Moreover, BSf and GBS parameters were correlated with surface area and amount of surface functional groups. In particular, higher surface area and amount of functional groups respectively decreased and increased the constants τc and α of the BSf stochastic model.

Keywords

Dyes adsorption Activated carbon Fractal kinetics Stochastic isotherm Surface heterogeneity Adsorption isotherms 

Notes

Acknowledgements

The Tunisian group gratefully acknowledges the financial support of the EU-METALIC Erasmus Mundus project, and of the Tunisian Ministry of Higher Education and Scientific Research. The French group gratefully acknowledges the financial support of the CPER 2007-2013 “Structuring the Competitiveness Fibre Cluster”, through local (Conseil Général des Vosges), regional (Région Lorraine), national (DRRT and FNADT) and European (FEDER) funds.

Supplementary material

10450_2017_9927_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1139 KB)

References

  1. Acosta, R., Fierro, V., Martinez de Yuso, A., Nabarlatz, D., Celzard, A.: Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere 149, 168–176 (2016).  https://doi.org/10.1016/j.chemosphere.2016.01.093CrossRefGoogle Scholar
  2. Altenor, S., Ncibi, M.C., Emmanuel, E., Gaspard, S.: Textural characteristics, physiochemical properties and adsorption efficiencies of Caribbean alga Turbinaria turbinata and its derived carbonaceous materials for water treatment application. Biochem. Eng. J. 67, 35–44 (2012).  https://doi.org/10.1016/j.bej.2012.05.008CrossRefGoogle Scholar
  3. Bandosz, T.J., Jagiello, J., Contescu, C., Schwarz, J.A.: Characterization of the surfaces of activated carbons in terms of their acidity constant distributions. Carbon 31(7), 1193–1202 (1993).  https://doi.org/10.1016/0008-6223(93)90072-ICrossRefGoogle Scholar
  4. Bello, O.S., Bello, I.A., Adegoke, K.A.: Adsorption of dyes using different types of sand: a review. S. Afr. J. Chem. 66, 00–00 (2013)Google Scholar
  5. Ben Hamissa, A.M., Brouers, F., Borhane, M., Seffen, M.: Adsorption of textile dyes using agave Americana (L.) fibres: equilibrium and kinetics modelling. Adsor. Sci. Technol. 25(5), 311–325 (2007).  https://doi.org/10.1260/026361707783432533CrossRefGoogle Scholar
  6. Ben Hamissa, A.M., Brouers, F., Ncibi, M.C., Seffen, M.: Kinetic modeling study on methylene blue sorption onto agave Americana fibers: fractal kinetics and regeneration studies. Sep. Sci. Technol. 48(18), 2834–2842 (2013).  https://doi.org/10.1080/01496395.2013.809104CrossRefGoogle Scholar
  7. Benaddi, H., Bandosz, T.J., Jagiello, J., Schwarz, J.A., Rouzaud, J.N., Legras, D., Béguin, F.: Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon 38(5), 669–674 (2000).  https://doi.org/10.1016/S0008-6223(99)00134-7CrossRefGoogle Scholar
  8. Bouhamed, F., Elouear, Z., Bouzid, J., Ouddane, B.: Multi-component adsorption of copper, nickel and zinc from aqueous solutions onto activated carbon prepared from date stones. Environ. Sci. Pollut. Res. 23(16), 15801–15806 (2016).  https://doi.org/10.1007/s11356-015-4400-3CrossRefGoogle Scholar
  9. Braghiroli, F.L., Fierro, V., Parmentier, J., Vidal, L., Gadonneix, P., Celzard, A.: Hydrothermal carbons produced from tannin by modification of the reaction medium: addition of H+ and Ag+. Ind. Crops Prod. 77, 364–374 (2015).  https://doi.org/10.1016/j.indcrop.2015.09.010CrossRefGoogle Scholar
  10. Brouers, F.: The fractal (BSf) kinetics equation and its approximations. J. Mod. Phys. 5(16), 1594 (2014a).  https://doi.org/10.4236/jmp.2014.516160CrossRefGoogle Scholar
  11. Brouers, F.: Statistical foundation of empirical isotherms. Open J. Stat. 4(09), 687–701 (2014b).  https://doi.org/10.4236/ojs.2014.49064CrossRefGoogle Scholar
  12. Brouers, F., Al-Musawi, T.J.: On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J. Mol. Liq. 212, 46–51 (2015).  https://doi.org/10.1016/j.molliq.2015.08.054CrossRefGoogle Scholar
  13. Brouers, F., Sotolongo-Costa, O.: Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A 368(1), 165–175 (2006).  https://doi.org/10.1016/j.physa.2005.12.062CrossRefGoogle Scholar
  14. Brouers, F., Sotolongo-Costa, O., Weron, K.: Burr, Lévy: Tsallis. Physica A 344(3), 409–416 (2004).  https://doi.org/10.1016/j.physa.2004.06.008CrossRefGoogle Scholar
  15. Brouers, F., Sotolongo, O., Marquez, F., Pirard, J.P.: Microporous and heterogeneous surface adsorption isotherms arising from Levy distributions. Physica A 349(1–2), 271–282 (2005).  https://doi.org/10.1016/j.physa.2004.10.032CrossRefGoogle Scholar
  16. Centeno, T.A., Stoeckli, F.: The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT. Carbon 9(48), 2478–2486 (2010)CrossRefGoogle Scholar
  17. Choi, Y.-K., Cho, M.-H., Kim, J.-S.: Air gasification of dried sewage sludge in a two-stage gasifier. Part 4: application of additives including Ni-impregnated activated carbon for the production of a tar-free and H2-rich producer gas with a low NH3 content. Int. J. Hydrog. Energy 41(3), 1460–1467 (2016).  https://doi.org/10.1016/j.ijhydene.2015.11.125CrossRefGoogle Scholar
  18. Dubinin, M.M.: In homogeneous microporous structures of carbonaceous adsorbents. Carbon 19, 321–324 (1981)CrossRefGoogle Scholar
  19. Enaime, G., Ennaciri, K., Ounas, A., Baçaoui, A., Seffen, M., Selmi, T., Yaacoubi, A.: Preparation and characterization of activated carbons from olive wastes by physical and chemical activation: application to Indigo carmine adsorption. J. Mater. Environ. Sci. 8(11), 4125–4137 (2017)Google Scholar
  20. Francois, B., Francisco, M.-M.: Dubinin isotherms versus the Brouers–Sotolongo family isotherms: a case study. Adsor. Sci. Technol. 34(9–10), 552–564 (2016).  https://doi.org/10.1177/0263617416670909Google Scholar
  21. Freundlich, H.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)Google Scholar
  22. Gaspard, S., Altenor, S., Passe-Coutrin, N., Ouensanga, A., Brouers, F.: Parameters from a new kinetic equation to evaluate activated carbons efficiency for water treatment. Water Res. 40(18), 3467–3477 (2006).  https://doi.org/10.1016/j.watres.2006.07.018CrossRefGoogle Scholar
  23. Ho, Y.S., McKay, G.: Sorption of dye from aqueous solution by peat. Chem. Eng. J. 70(2), 115–124 (1998).  https://doi.org/10.1016/S0923-0467(98)00076-1CrossRefGoogle Scholar
  24. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999).  https://doi.org/10.1016/S0032-9592(98)00112-5CrossRefGoogle Scholar
  25. Húmpola, P., Odetti, H., Moreno-Piraján, J.C., Giraldo, L.: Activated carbons obtained from agro-industrial waste: textural analysis and adsorption environmental pollutants. Adsorption 22(1), 23–31 (2016).  https://doi.org/10.1007/s10450-015-9728-yCrossRefGoogle Scholar
  26. IUPAC: International Union of Pure and Applied Chemistry; Korean Chemical Society. 45th IUPAC World Chemestry Congress, Busan, Korea, 9–14 August 2015. Elseviers, Amsterdam (2015)Google Scholar
  27. Jagiello, J.: Stable numerical solution of the adsorption integral equation using splines. Langmuir 10(8), 2778–2785 (1994).  https://doi.org/10.1021/la00020a045CrossRefGoogle Scholar
  28. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70–80 (2013).  https://doi.org/10.1016/j.carbon.2012.12.011CrossRefGoogle Scholar
  29. Jagiello, J., Bandosz, T.J., Putyera, K., Schwarz, J.A.: Determination of proton affinity distributions for chemical systems in aqueous environments using a stable numerical solution of the adsorption intergral equation. J. Colloid Interface Sci. 172, 341–346 (1995)CrossRefGoogle Scholar
  30. Jagiello, J., Bandosz, T.J., Schwarz, J.A.: Carbon surface characterization in terms of its acidity constant distribution. Letters to the editor. Carbon 32, 1026–1028 (2000)CrossRefGoogle Scholar
  31. Jagiello, J., Ania, C., Parra, J.B., Cook, C.: Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2. Carbon 91, 330–337 (2015).  https://doi.org/10.1016/j.carbon.2015.05.004CrossRefGoogle Scholar
  32. Jaramillo, M.M., Mendoza, A., Vaquero, S., Anderson, M., Palma, J., Marcilla, R.: Role of textural properties and surface functionalities of selected carbons on the electrochemical behaviour of ionic liquid based-supercapacitors. RSC Adv. 2(22), 8439–8446 (2012).  https://doi.org/10.1039/C2RA21035ECrossRefGoogle Scholar
  33. Jovanović, D.S.: Physical adsorption of gases. Kolloid-Zeitschrift und Zeitschrift für Polymere 235(1), 1203–1213 (1969).  https://doi.org/10.1007/bf01542530CrossRefGoogle Scholar
  34. Kesraoui, A., Selmi, T., Seffen, M., Brouers, F.: Influence of alternating current on the adsorption of indigo carmine. Environ. Sci. Pollut. Res. 24(11), 1–11 (2016).  https://doi.org/10.1007/s11356-016-7201-4Google Scholar
  35. Kopelman, R.: Fractal Reaction Kinetics. Science 241, 1620–1626 (1988).  https://doi.org/10.1126/science.241.4873.1620CrossRefGoogle Scholar
  36. Lagergren, S.: Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakade-miens. Handlingar 24(4), 1–39 (1898)Google Scholar
  37. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  38. Mailler, R., Gasperi, J., Coquet, Y., Buleté, A., Vulliet, E., Deshayes, S., Zedek, S., Mirande-Bret, C., Eudes, V., Bressy, A.: Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci. Total Environ. 542, 983–996 (2016).  https://doi.org/10.1016/j.scitotenv.2015.10.153CrossRefGoogle Scholar
  39. Meilanov, R.P., Sveshnikova, D.A., Shabanov, O.M.: Fractal nature of sorption kinetics. J. Phys. Chem. A 106(48), 11771–11774 (2002).  https://doi.org/10.1021/jp0216575CrossRefGoogle Scholar
  40. Miao, M.-S., Liu, Q., Shu, L., Wang, Z., Liu, Y.-Z., Kong, Q.: Removal of cephalexin from effluent by activated carbon prepared from alligator weed: kinetics, isotherms, and thermodynamic analyses. Process. Saf. Environ. Prot. 104(Part B), 481–489 (2016).  https://doi.org/10.1016/j.psep.2016.03.017CrossRefGoogle Scholar
  41. Ncibi, M., Altenor, S., Seffen, M., Brouers, F., Gaspard, S.: Modelling single compound adsorption onto porous and non-porous sorbents using a deformed Weibull exponential isotherm. Chem. Eng. J. 145(2), 196–202 (2008)CrossRefGoogle Scholar
  42. Neimark, A.: A new approach to the determination of the surface fractal dimension of porous solids. Physica A 191(1), 258–262 (1992).  https://doi.org/10.1016/0378-4371(92)90536-YCrossRefGoogle Scholar
  43. Pereira, L.M.: Fractal pharmacokinetics. Comput. Math. Methods Med. 11(2), 161–184 (2010).  https://doi.org/10.1080/17486700903029280CrossRefGoogle Scholar
  44. Rodríguez, A., García, J., Ovejero, G., Mestanza, M.: Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. J. Hazard. Mater. 172(2–3), 1311–1320 (2009).  https://doi.org/10.1016/j.jhazmat.2009.07.138CrossRefGoogle Scholar
  45. Sandro, A., Carene, B., Emmanuel, E., Lambert, J., Ehrhardt, J.-J., Gaspard, S.: Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. J. Hazard. Mater. 165, 1029–1039 (2009).  https://doi.org/10.1016/j.jhazmat.2008.10.133CrossRefGoogle Scholar
  46. Seredych, M., Biggs, M.J., Bandosz, T.J.: Oxygen reduction on chemically heterogeneous iron-containing nanoporous carbon: the effects of specific surface functionalities. Microporous Mesoporous Mater. 221, 137–149 (2016).  https://doi.org/10.1016/j.micromeso.2015.09.032CrossRefGoogle Scholar
  47. Sethia, G., Sayari, A.: Activated carbon with optimum pore size distribution for hydrogen storage. Carbon 99, 289–294 (2016).  https://doi.org/10.1016/j.carbon.2015.12.032CrossRefGoogle Scholar
  48. Sips, R.: The structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948).  https://doi.org/10.1063/1.1746922CrossRefGoogle Scholar
  49. Sokołowska, Z., Hajnos, M., Hoffmann, C., Renger, M., Sokołowski, S.: Comparison of fractal dimensions of soils estimated from adsorption isotherms,mercury intrusion,and particle size distribution. J. Plant Nutr. Soil Sci. 164(5), 591–599 (2001).  https://doi.org/10.1002/1522-2624(200110)164:5<591::AIDLPLN591>3.0.CO;2-YCrossRefGoogle Scholar
  50. Stanislavsky, A., Weron, K.: Is there a motivation for a universal behaviour in molecular populations undergoing chemical reactions? Phys. Chem. Chem. Phys. 15(37), 15595–15601 (2013).  https://doi.org/10.1039/C3CP52272ECrossRefGoogle Scholar
  51. Stoeckli, F.: Characterization of microporous carbons by adsorption and immersion techniques. Porosity in carbons–characterization and applications. London: Arnold (1995)Google Scholar
  52. Tian, S., Mo, H., Zhang, R., Ning, P., Zhou, T.: Enhanced removal of hydrogen sulfide from a gas stream by 3-aminopropyltriethoxysilane-surface-functionalized activated carbon. Adsorption 15(5), 477 (2009).  https://doi.org/10.1007/s10450-009-9198-1CrossRefGoogle Scholar
  53. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921).  https://doi.org/10.1103/PhysRev.17.273CrossRefGoogle Scholar
  54. Zhang, Z., Pfefferle, L., Haller, G.L.: Characterization of functional groups on oxidized multi-wall carbon nanotubes by potentiometric titration. Catal. Today 249, 23–29 (2015).  https://doi.org/10.1016/j.cattod.2014.12.013CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Energy and Materials (LabEM), High School of Sciences and Technology of Hammam SousseSousse UniversityHammam SousseTunisia
  2. 2.Institut Jean LamourUMR Université de Lorraine, CNRS 7198Nancy CedexFrance
  3. 3.Micromeritics Instrument CorporationNorcrossUSA
  4. 4.Institut Jean LamourUMR Université de Lorraine, CNRS 7198Epinal Cedex 9France

Personalised recommendations