Adsorption

, Volume 24, Issue 1, pp 105–120 | Cite as

Chromium adsorption into a macroporous resin based on vinylpyridine–divinylbenzene copolymers: thermodynamics, kinetics, and process dynamic in a fixed bed column

  • José Antonio Arcos-Casarrubias
  • Martín R. Cruz-Díaz
  • Judith Cardoso-Martínez
  • Jorge Vázquez-Arenas
  • Francisco Vidal Caballero-Domínguez
Article
  • 154 Downloads

Abstract

The synthesis of the poly(4-vinylpyridine-co-ethylvinylbenzene) resin is investigated and its performance to remove Cr(VI) from aqueous solutions is evaluated as a function of pH using batch and fixed bed column adsorptions. The rate of Cr(VI) removal is observed to increase as the pH solution shifts to acidic conditions due to an enhanced protonation of the 4-vinylpyridine group in the polymer, which favors its electrostatic attraction with Cr(VI) oxyanions. This finding is supported with Density Functional Theory (DFT) calculations, revealing that the interaction between \({\text{CrO}}_{4}^{{2 - }}\) (predominant species at pH < 6) and protonated 4VP is more favorable than a bond formed with \({\text{HCrO}}_{4}^{ - }\) species (pH > 6) due to a higher charge delocalization arising in the O atoms. Experimental isotherms are approximated with the Langmuir and Radke-Prausnitz adsorption models. This former approach generates the best fitting to the data, whereby it was incorporated into a nonlinear transient model to account for the Cr(VI) adsorption in a fixed bed, and evaluating its capacity to predict experimental adsorption data. The model enables to infer that the resin presents a fast kinetic for Cr(VI) sorption, and the Cr(VI) intra-particle diffusion across the adsorbent pores is the rate-determining step for sorption.

Keywords

Vinylpyridine–divinylbenzene copolymer Chromium adsorption Mathematical modelling Fixed bed column Density functional theory 

Abbreviations

\({A_s}\)

Area of transversal section of the column (cm2)

\({{\text{a}}_{\text{e}}}\)

Mass transfer specific area (cm−1)

\({C_e}\)

The equilibrium concentrations in the liquid phase (mg Cr L−1)

\({C_0}\)

The initial concentrations in the liquid phase (mg Cr L−1)

\({C_{{\text{Cr}}}}\)

Concentration of Cr(VI) in the bulk fluid phase (mg L−1)

\(C_{{{\text{Cr}}}}^{0}\)

Feed concentration of Cr(VI) in the bulk fluid phase (mg L−1)

\({C_{{\text{Cr}}\left( \delta \right)}}\)

Concentration of Cr(VI) in the layer (mg L−1)

\({C_t}\)

The effluent Cr(VI) concentrations through the bed (mg L−1)

\(~{D_{ax}}\)

Axial dispersion coefficient in the fluid phase (cm2 min−1)

\({d_p}\)

Equivalent diameter of the adsorbent particle (cm)

\({D_m}\)

Molecular diffusivity of Cr(VI) (cm2 min−1)

\(F\)

Volumetric flow rate (cm3 min−1)

\(G\)

Mass flux (g cm−2 min−1)

\({k_f}\)

Mass transfer coefficient in external liquid film (cm min−1)

\(~{K_L}\)

Constant related to the free adsorption energy (L mg−1)

\({k_s}\)

Mass transfer coefficient in the adsorbent (min−1)

\({L_c}\)

Fixed bed length (cm)

\(~{K_{RPIII}}\)

Radke-Prausnitz constant

\(~m\)

Mass of resin (g)

\(n\)

Dimensionless exponent

\({n_s}\)

Number of experimental data points

\(Q\)

Water swelling capacity

\(q\)

Average concentration of Cr(VI) adsorbed in the adsorbent (mg g−1)

\({q_e}\)

Amount of chromium adsorbed per unit weight of resin at equilibrium (mg g−1)

\(~{q_{max}}\)

Maximal adsorption capacity (mg g−1)

\(~{q_{mRPIII}}\)

Constant Radke-Prausnitz

\({q_t}\)

Total Cr(VI) adsorbed on the copolymer at different time (mg g−1)

\({r_{ads}}\)

Chromium adsorption rate (g g−1 min−1)

\(S\)

Least squared error function

\(t\)

Time (min)

\(u\)

Velocity (cm min−1)

\(V\)

Volume of the solution (L)

\(W\)

Dimensionless parameter

\({W_s}\)

Weight of the swollen resin (g)

\({W_d}\)

Weight of the dried resin (g)

Greek Letters

\({\beta _{RPIII}}\)

Radke-Prausnitz exponent

\({{{{\rho}}}_{{f}}}\)

Density of the fluid phase (g cm−3)

\({{{{\rho}}}_{{b}}}\)

Density of the bed (g L−1)

\(\epsilon\)

Column void fraction

\({{{\mu}}}\)

Viscosity of the fluid phase (g cm−1 min−1)

Notes

Acknowledgements

This work was supported by the Mexican Council for Science and Technology (CONACyT, Grant Number CB-220232).

References

  1. Arslan, M., Yigitoglu, M., Soysal, A.: Removal of chromium(VI) from aqueous solutions using poly(4-vinyl pyridine) beads. J. Appl. Polym. Sci. 101, 2865–2870 (2006).  https://doi.org/10.1002/app.2333 CrossRefGoogle Scholar
  2. Auki, S.K., Neufeld, R.D.: Use of activated carbon for the recovery of chromium from industrial wastewaters. J. Chem. Tech. Biotechonol. 70(1), 3–8 (1997)CrossRefGoogle Scholar
  3. Bai, R.S., Abraham, T.E.: Studies on chromium(VI) adsorption–desorption using immobilized fungal biomass. Bioresour. Technol. 87, 17–26 (2003).  https://doi.org/10.1016/S0960-8524(02)00222-5 CrossRefGoogle Scholar
  4. Bajpai, J., Shrivastava, R., Bajpai, A.K.: Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf. A 236, 81–90 (2004).  https://doi.org/10.1016/j.colsurfa.2004.01.021 CrossRefGoogle Scholar
  5. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  6. Borba, C.E., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G.: Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184–191 (2006).  https://doi.org/10.1016/j.bej.2006.04.001 CrossRefGoogle Scholar
  7. Cardoso, J., Ortiz-Palacios, J., Manero, O.: Production of microporous resins for heavy-metal removal II, functionalized polymers. J. Appl. Polym. Sci. 107, 3644–3653 (2008).  https://doi.org/10.1002/app.27422 CrossRefGoogle Scholar
  8. Cerato, A., Lutenegger, A.: Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech. Test. J. 25, 315–321 (2002).  https://doi.org/10.1520/GTJ11087J Google Scholar
  9. Chandat, M., Rempel, G.L.: Poly (4-vinylpyridine) gel-coated on silica. High capacity and fast kinetics in uranyl sulfate recovery. Ind. Eng. Chem. Res. 32, 726–732 (1993).  https://doi.org/10.1021/ie00016a020 CrossRefGoogle Scholar
  10. Cruz-Díaz, M.R., Rivero, E.P., Almazán-Ruiz, F.J., Torres-Mendoza, A., González, I.: Design of a new FM01-LC reactor in parallel plate configuration using numerical simulation and experimental validation with residence time distribution (RTD). Chem. Eng. Process. 85, 145–154 (2014).  https://doi.org/10.1016/j.cep.2014.07.010 CrossRefGoogle Scholar
  11. da Silva, E.A., Cossich, E.S., Tavares, C.G., Cardozo Filho, L., Guirardello, R.: Modeling of copper(II) biosorption by marine alga Sargassum sp. In fixed-bed column. Process Biochem. 38, 791/799 (2002).  https://doi.org/10.1016/S0032-9592(02)00231-5 CrossRefGoogle Scholar
  12. Deltombe, de Zoubov N., Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd edn. NACE, Houston (1974)Google Scholar
  13. Deng, S., Bai, R.: Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Res. 38, 2424–2432 (2004).  https://doi.org/10.1016/j.watres.2004.02.024 CrossRefGoogle Scholar
  14. Deng, S., Renbi, B.: Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Res. 38, 2424–2432 (2004).  https://doi.org/10.1016/j.watres.2004.02.024 CrossRefGoogle Scholar
  15. Dhal, B., Thatoi, H.N., Das, N.N., Pandey, B.D.: Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/ metallurgical solid waste: a review. J. Hazard. Mater. 250, 272–291 (2013).  https://doi.org/10.1016/j.jhazmat.2013.01.048 CrossRefGoogle Scholar
  16. Donghee, P., Yeoung-Sang, Y., Ji, H.J., Jong, M.P.: Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res. 39, 533–540 (2005a).  https://doi.org/10.1016/j.watres.2004.11.002 CrossRefGoogle Scholar
  17. Donghee, P., Yeoung-Sang, Y., Jong, M.P.: Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem. 40, 2559–2565 (2005b).  https://doi.org/10.1016/j.procbio.2004.12.002 CrossRefGoogle Scholar
  18. Edebali, S., Pehlivan, E.: Evaluation of Amberlite IRA96 and Dowex 1 × 8 ionexchange resins for the removal of Cr(VI) from aqueous solution. Chem. Eng. J 161, 161–166 (2010).  https://doi.org/10.1016/j.cej.2010.04.059 CrossRefGoogle Scholar
  19. Erbay, E., Okay, O.: Macroporous styrene–divinylbenzene copolymers: formation of stable porous structures during the copolymerization. Polym. Bull. 41, 379–385 (1998).  https://doi.org/10.1007/s002890050377 CrossRefGoogle Scholar
  20. Foo, K.Y., Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156(1), 2–10 (2010).  https://doi.org/10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  21. Galán, B., Castañeda, D., Ortiz, I.: Removal and recovery of Cr(VI) from polluted ground waters: a comparative study of ion-exchange technologies. Water Res. 39, 4317–4324 (2005).  https://doi.org/10.1016/j.watres.2005.08.015 CrossRefGoogle Scholar
  22. Gang, D., Banerji, S.K., Clevenger, T.E.: Modified poly(4-vinylpyridine) coated silica gel. Fast kinetics of diffusion-controlled sorption of chromium(VI). Ind. Eng. Chem. Res. 40, 1200–1204 (2001).  https://doi.org/10.1021/ie000771b CrossRefGoogle Scholar
  23. Gode, F., Pehlivan, E.: Removal of Cr(VI) from aqueous solution by two Lewatitanion exchange resins. J. Hazard. Mater. 119, 175–182 (2005).  https://doi.org/10.1016/j.jhazmat.2004.12.004 CrossRefGoogle Scholar
  24. Gokmen, M.T., Du Prez, F.E.: Porous polymer particles-A comprehensive guide to synthesis, characterization, functionalization and applications. Prog. Polym. Sci. 37, 365–405 (2012).  https://doi.org/10.1016/j.progpolymsci.2011.07.006 CrossRefGoogle Scholar
  25. Gupta, V.K., Gupta, M., Sharma, S.: Process development for the removal of lead and chromium from aqueous solutions using red mud: an aluminium industry waste. Water Res. 35(1), 1125–1134 (2001).  https://doi.org/10.1016/S0043-1354(00)00389-4 CrossRefGoogle Scholar
  26. Horák, D., Beneš, M.J., Gumargalieva, K., Zaikov, G.: A novel highly copper(II)-selective chelating ion exchanger based on poly(glycidyl methacrylate-co-ethylene dimethacrylate) beads modified with aspartic acid derivative. J. Appl. Polym. Sci. 80, 913–916 (2001).  https://doi.org/10.1002/app.1170 CrossRefGoogle Scholar
  27. Iadicicco, N., Paduano, L., Vitagliano, V.: Diffusion coefficients for the system potassium chromate–water at 25 °C. J. Chem. Eng. Data 411, 529–533 (1996).  https://doi.org/10.1021/je9502861 CrossRefGoogle Scholar
  28. Iyengar, S.S., Schlegel, H.B., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. II. Generalizations based on mass-weighting, idempotency, energy conservation and choice of initial conditions. J. Chem. Phys. 115, 10291–10302 (2001).  https://doi.org/10.1063/1.1416876 CrossRefGoogle Scholar
  29. Jacukowsky-Sobala, I., Ocinski, D., Kociołek-Balawejder, E.: Synthesis and evaluation of a novel hybrid polymer containing manganese and iron oxides as a sorbent for As(III) and As(V) removal. Ind. Eng. Chem. Res. 52(19), 6453–6461 (2013).  https://doi.org/10.1021/ie400478x CrossRefGoogle Scholar
  30. Kim, K., Lee, K.S., Lee, J.H.: Bilevel optimizing control structure for a simulated moving bed process based on a reduced-order model using the cubic spline collocation method. Ind. Eng. Chem. Res. 49, 3689–3699 (2010).  https://doi.org/10.1021/ie901121y CrossRefGoogle Scholar
  31. Kobya, M.: Removal of Cr(VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies. Bioresour. Technol. 91, 317–321 (2004).  https://doi.org/10.1016/j.biortech.2003.07.001 CrossRefGoogle Scholar
  32. Kocaoba, S., Akcin, G.: A kinetic investigation of chromium. Adsorption 9, 143–151 (2003).  https://doi.org/10.1023/A:1024293310492 CrossRefGoogle Scholar
  33. Kowalski, Z.: Treatment of chromic tannery wastes. J. Hazard. Mater. 37, 137–141 (1994).  https://doi.org/10.1016/0304-3894(94)85042-9 CrossRefGoogle Scholar
  34. Kun, K.A., Kunin, R.: Macroreticular resins: III. Formation of macroreticular styrene–divinylbenzene copolymers. J. Polym. Sci. A 6, 2689–2696 (1968).  https://doi.org/10.1002/pol.1968.150061001 CrossRefGoogle Scholar
  35. Mohammad, M.S., Daud, W.M.A.W., Shamiri, A.: A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem. Eng. Res. Des. 92, 961–988 (2014).  https://doi.org/10.1016/j.cherd.2013.08.018 CrossRefGoogle Scholar
  36. Mustafa, S., Ahmad, T., Naeem, A., Shah, K., Waseem, M.: Kinetics of chromium ion removal from tannery wastes using amberlite IRA-400 Cl and its hybrids. Water Air Soil Pollut. 210, 43–50 (2010).  https://doi.org/10.1007/s11270-009-0221-7 CrossRefGoogle Scholar
  37. Nakano, Y., Kenji, T., Toshiro, T.: Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel. Water Res. 35, 496–500 (2001).  https://doi.org/10.1016/S0043-1354(00)00279-7 CrossRefGoogle Scholar
  38. Nodeli, A., Hajiebrahimi, M., Parvazinia, M., Shahrokhi, M., Abedini, H.: Correlations for prediction of specific surface area and bulk and apparent densities of porous styrene-divinylbenzene copolymers. J. Appl. Polym. Sci. 120:1942–1949 (2011).  https://doi.org/10.1002/app.33275 CrossRefGoogle Scholar
  39. Ortiz-Palacios, J., Cardoso, J., Manero, O.: Production of macroporous resins for heavy-metal removal I, nonfunctionalized polymers. J. Appl. Polym. Sci. 107, 2203–2210 (2008).  https://doi.org/10.1002/app.27243 CrossRefGoogle Scholar
  40. Pehlivan, E., Cetin, S.: Sorption of Cr(VI) ions on two Lewatit-anion exchange resins and their quantitative determination using UV–Visible spectrophotometer. J. Hazard. Mater. 163, 448–453 (2009).  https://doi.org/10.1016/j.jhazmat.2008.06.115 CrossRefGoogle Scholar
  41. Polowczyk, I., Urbano, B.F., Rivas, B.L., Bryjak, M., Kabay, N.: Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-d-glucamine groups. Chem. Eng. J. 284, 395–404 (2016).  https://doi.org/10.1016/j.cej.2015.09.018 CrossRefGoogle Scholar
  42. Raji, C., Anirudhan, T.S.: Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Res. 32, 3772–3780 (1998).  https://doi.org/10.1016/S0043-1354(98)00150-X CrossRefGoogle Scholar
  43. Rivera, F.F., Cruz-Díaz, M.R., Rivero, E.P., González, I.: Analysis and interpretation of residence time distribution experimental curves in FM01-LC reactor using axial dispersion and plug dispersion exchange models with closed–closed boundary conditions. Electrochim. Acta 56, 361–371 (2010).  https://doi.org/10.1016/j.electacta.2010.08.069 CrossRefGoogle Scholar
  44. Ruotolo, L.A.M., Gubulin, J.C.: Chromium(VI) reduction using conducting polymer films. React. Funct. Polym. 62, 141–151 (2005).  https://doi.org/10.1016/j.reactfunctpolym.2004.11.004 CrossRefGoogle Scholar
  45. Sandhya, B., Tonni, A.K.: Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 54, 951–967 (2004).  https://doi.org/10.1016/j.chemosphere.2003.10.001 CrossRefGoogle Scholar
  46. Schlegel, H.B., Millam, J.M., Iyengar, S.S., Voth, G.A., Daniels, A.D., Scuseria, G.E., Frisch, M.J.: Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. J. Chem. Phys. 114, 9758–9763 (2001).  https://doi.org/10.1063/1.1372182 CrossRefGoogle Scholar
  47. Schlegel, H.B., Iyengar, S.S., Li, X., Millam, J.M., Voth, G.A., Scuseria, G.E., Frisch, M.J.: Ab initio molecular dynamics: propagating the density matrix with Gaussian orbitals. III. Comparison with born–oppenheimer dynamics. J. Chem. Phys. 117, 8694–8704 (2002).  https://doi.org/10.1063/1.1514582 CrossRefGoogle Scholar
  48. Sherrington, D.C.: Preparation, structure and morphology of polymer supports. Chem. Commun. 21, 2275–2286 (1998).  https://doi.org/10.1039/A803757D CrossRefGoogle Scholar
  49. Shi, T., Wang, Z., Liu, Y., Jia, S., Changming, D.: Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J. Hazard. Mater. 161, 900–906 (2009).  https://doi.org/10.1016/j.jhazmat.2008.04.041 CrossRefGoogle Scholar
  50. Singh, V.K., Tiwari, P.N.:(1997) Removal and recovery of chromium(VI) from industrial waste water. J. Chem. Tech. Biotechnol. 69, 376–382.  https://doi.org/10.1002/(SICI)1097-4660(199707)69:3<376::AIDJCTB714>3.0.CO;2-F CrossRefGoogle Scholar
  51. Soo-Jin, P., Young-Mi, K.: Influence of anodic treatment on heavy metal ion removal by activated carbon fibers. J. Colloid. Interface Sci. 278, 276–281 (2004).  https://doi.org/10.1016/j.jcis.2004.06.004 CrossRefGoogle Scholar
  52. Sugii, A., Ogawa, N., Harada, K., Nishimura, K.: Metal sorption of macroreticular poly(4-vinylpyridine) resins cross-linked with oligo(ethylene glycol dimethacrylates). Anal. Sci. 4, 399–402 (1988).  https://doi.org/10.2116/analsci.4.399 CrossRefGoogle Scholar
  53. Tomasi, J., Mennucci, B., Cammi, R.: Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).  https://doi.org/10.1021/cr9904009 CrossRefGoogle Scholar
  54. Wang, C.C., Chen, C.Y., Chang, C.Y.: Synthesis of chelating resins with iminodiacetic acid and its wastewater treatment application. J. Appl. Polym. Sci. 84, 1353–1362 (2002).  https://doi.org/10.1002/app.10243 CrossRefGoogle Scholar
  55. World Health Organization: Guidelines for Drinking-Water Quality, Vol. 1. World Health Organization, Geneva (2008)Google Scholar
  56. Yasmine, A.O., Malika, C., Abdeltif, A., Aicha, B.: Sorption of hexavalent chromium metal onto Amberlite IRA 410: equilibrium isotherms and kinetic studies. Desalin. Water Treat. 38, 409–415 (2012).  https://doi.org/10.1080/19443994.2012.664414 CrossRefGoogle Scholar
  57. Yiğitoğlu, M., Arslon, M.: Adsorption of hexavalent chromium from aqueous solutions using 4-vinyl pyridine grafted poly(ethylene terephthalate) fibers. Polym. Bull. 55, 259–268 (2005).  https://doi.org/10.1007/s00289-005-0440-z CrossRefGoogle Scholar
  58. Yilmaz, E., Küçükyavuz, Z.: Monomer reactivity ratios of styrene-4-vinylpyridine copolymers at low and high conversions. Polymer 34, 145–149 (1993).  https://doi.org/10.1016/0032-3861(93)90297-N CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.División de Ingeniería Química y BioquímicaTecnológico de Estudios Superiores de EcatepecEcatepec de MorelosMexico
  2. 2.Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán Campo UnoUniversidad Nacional Autónoma de MéxicoCuautitlan IzcalliMexico
  3. 3.Departamento de FísicaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico
  4. 4.Centro Mexicano para la Producción más LimpiaInstituto Politécnico NacionalMexico CityMexico

Personalised recommendations