, Volume 24, Issue 1, pp 65–71 | Cite as

Oxygen sorption/desorption kinetics of SrCo0.8Fe0.2O3−δ perovskite adsorbent for high temperature air separation

  • Peixuan Hao
  • Yixiang Shi
  • Shigang Li
  • Shuguang Liang


Perovskites with high selectivity for oxygen are expected to be advantageous for oxygen production by vacuum pressure swing adsorption (VPSA). However, the kinetics of this process has only been investigated by thermogravimetric analysis (TGA) and fixed-bed setups, which cannot simulate the vacuum desorption process. Furthermore, the adsorption and desorption performances at high pressures are rarely discussed. In this study, the perovskite SrCo0.8Fe0.2O3−δ (SCF82) is prepared, and its isotherm and oxygen sorption and desorption kinetics are studied at 400 °C using both TGA and a high-pressure adsorption instrument. The high pressure adsorption and desorption performance confirms that VPSA is more suitable for oxygen production than pressure swing adsorption (PSA). The high-pressure adsorption instrument simulates the vacuum desorption process more effectively than TGA. A high vacuum desorption rate was found, indicating that the adsorption rate has a greater influence than the desorption rate when considering perovskite oxide adsorbents for use with VPSA techniques.


Perovskite VPSA Oxygen production High pressure Desorption rate 



This research was financed by National Natural Science Foundation of China (51476092) and Shanxi Province Science and Technology Major Projects of (MH2015-06).


  1. Bell, R.J., Millar, G.J., Drennan J.: Influence of synthesis route on the catalytic properties of La1–xSrxMnO3. Solid State Ionics. 131, 211–220 (2000)CrossRefGoogle Scholar
  2. Gao, X., Zou, X., Ma, H., Meng, S., Zhu, G.: Highly selective and permeable porousorganic framework membrane for CO2 capture. Adv. Mater. 26, 3644–3648 (2014)CrossRefGoogle Scholar
  3. Guntuka, S., Banerjee, S., Farooq, S., Srinivasan, M.P.: A-and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 1. Thermogravimetric analysis of equilibrium and kinetics. Ind. Eng. Chem. Res. 47, 154–162 (2008)CrossRefGoogle Scholar
  4. He, Y., Zhu, X., Li, Q., Yang W.: Perovskite oxide absorbents for oxygen separation. AIChE J. 55, 3125–3133 (2009)CrossRefGoogle Scholar
  5. Huang, K., Feng, M., Goodenough, J.B.: Sol–gel synthesis of a new oxide- ion conductor Sr- and Mg- doped LaGaO3 perovskite. J. Am. Ceram. Soc. 79, 1100–1104 (1996)CrossRefGoogle Scholar
  6. Ikeda, H., Nikata, S., Hirakawa, E., Tsuchida, A., Miura, N.: Oxygen sorption/desorption behavior and crystal structural change for SrFeO3−δ. Chem. Eng. Sci. 147, 166–172 (2016)CrossRefGoogle Scholar
  7. Kusaba, H., Sakai, G., Shimanoe, K., Miura, N., Yamazoe, N.: Oxygen-sorptive and-desorptive properties of perovskite-related oxides under temperature-swing conditions for oxygen enrichment. Solid State Ionics. 152, 689–694 (2002a)CrossRefGoogle Scholar
  8. Kusaba, H., Sakai, G., Shimanoe, K., Yamazoe, N., Miura, N.: Temperature-swing based oxygen enrichment by using perovskite-type oxides. J. Mater. Sci. Lett. 21, 407–409 (2002b)CrossRefGoogle Scholar
  9. Masunaga, T., Izumi, J., Miura, N.: Relationship between oxygen sorption properties and crystal structure of Fe-based oxides with double perovskite composition. Chem. Eng. Sci. 84, 108–112 (2012)CrossRefGoogle Scholar
  10. Mohammadi, N., Mohammad, I.H., Armin, D.E., James, A.R.: New pressure swing adsorption cycle schedules for producing high-purity oxygen using carbon molecular sieve. Ind. Eng. Chem. Res. 55, 10758–10770 (2016)CrossRefGoogle Scholar
  11. Nikolić, D.D., Kikkinides, E.S.: Modelling and optimization of hybrid PSA/membrane separation processes. Adsorption. 21, 283–305 (2015)CrossRefGoogle Scholar
  12. Petric, A., Huang, P., Tietz F.: Evaluation of La–Sr–Co–Fe–O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics. 135, 719–725 (2000)CrossRefGoogle Scholar
  13. Rao, V.R., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption. 20, 53–60 (2014)CrossRefGoogle Scholar
  14. Reynolds, S.P., Armin, D.E., James, A.R.: New pressure swing adsorption cycles for carbon dioxide sequestration. Adsorption. 11, 531–536 (2005)CrossRefGoogle Scholar
  15. Tan, L., Gu, X., Yang, L., Jin, W., Zhang, L., Xu, N.: Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite-type membranes. J. Membr. Sci. 212, 157–165 (2003)CrossRefGoogle Scholar
  16. Tan, L., Yang, L., Gu, X., Jin, W., Zhang, L., Xu, N.: Structure and oxygen permeability of Ag-doped SrCo0.8Fe0.2O3−δ oxide. AIChE J. 50, 701–707 (2004)CrossRefGoogle Scholar
  17. Wang, H., Wang, R., Liang, D.T., Yang, W.: Experimental and modeling studies on Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) tubular membranes for air separation. J. Membr. Sci. 243, 405–415 (2004)CrossRefGoogle Scholar
  18. Wang, H., Kölsch, P., Schiestel, T., Tablet, C., Werth, S., Caro, J.: Production of high-purity oxygen by perovskite hollow fiber membranes swept with steam. J. Membr. Sci. 284, 5–8 (2006)CrossRefGoogle Scholar
  19. Yang, Z.H., Lin, Y.S.: High-temperature oxygen sorption in a fixed bed packed with perovskite-type ceramic sorbents. Ind. Eng. Chem. Res. 42, 4376–4381 (2003)CrossRefGoogle Scholar
  20. Yin, Q., Lin, Y.S.: Effect of dopant addition on oxygen sorption properties of La–Sr–Co–Fe–O perovskite type oxide. Adsorption. 12, 329–338 (2006)CrossRefGoogle Scholar
  21. Yin, Q., Lin, Y.S.: Beneficial effect of order–disorder phase transition on oxygen sorption properties of perovskite-type oxides. Solid State Ionics. 178, 83–89 (2007)CrossRefGoogle Scholar
  22. Yin, Q., Yang, Z., Lin, Y.S.: Effects of microstructure on oxygen transport in perovskite-type oxides. J. Mater. Sci. 41, 4865–4870 (2006)CrossRefGoogle Scholar
  23. Yin, Q., Kniep, J., Lin, Y.S.: High temperature air separation by perovskite-type oxide sorbents–heat effect minimization. Chem. Eng. Sci. 63, 5870–5875 (2008a)CrossRefGoogle Scholar
  24. Yin, Q., Kniep, J., Lin, Y.S.: Oxygen sorption and desorption properties of Sr–Co–Fe oxide. Chem. Eng. Sci. 63, 2211–2218 (2008b)CrossRefGoogle Scholar
  25. Yoshida, S., Ogawa, N., Kamioka, K., Hirano, S., Mori, T.: Study of zeolite molecular sieves for production of oxygen by using pressure swing adsorption. Adsorption. 5, 57–61 (1999)CrossRefGoogle Scholar
  26. Zheng, J., Barrett, P.A., Pontonio, S.J., Stephenson, N.A., Chandra, P., Kechagia, P.: High-rate and high-density gas separation adsorbents and manufacturing method. Adsorption. 20, 47–156 (2014)CrossRefGoogle Scholar
  27. Zhu, X., Liu, Y., Yang, X., Liu, W.: Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption. 23, 175–184 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Peixuan Hao
    • 1
  • Yixiang Shi
    • 1
  • Shigang Li
    • 2
  • Shuguang Liang
    • 2
  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal EngineeringTsinghua UniversityBeijingChina
  2. 2.Beijing Peking University Pioneer Technology Co. Ltd.BeijingChina

Personalised recommendations