Skip to main content

Advertisement

Log in

Development of averaged solid–fluid potential energies for layers and solids of various geometries and dimensionality

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The solid–fluid (SF) interaction energy describes the affinity between one adsorbate molecule and a solid. Its quantification is an essential input for the simulation of the adsorption isotherm, the isosteric heat and details of the microscopic structure of the adsorbate. A good approximation to the SF energy can be obtained by direct summation of all effective pairwise interaction energies (LJ plus electrostatic) between an adsorbate molecule and all the atoms in the solid. To repeat this summation for each new configuration in a simulation is very time-consuming. One resolution is to construct database tables of the solid–fluid potentials, which leads to massive databases if the grid separation used is very small. For solids that have simple geometries an alternative is to determine the approximate solid–fluid potential by ignoring the discrete atomic structure of the solid. This level of approximation is adequate for many simulations of engineering interest where fine details, for example in the first adsorbate layer, are not necessary. In this paper, we report comprehensive derivations of solid–fluid potentials for a wide range of solids, in layered structures with constant surface atom density or solid structures with constant atom density, and various curvatures and dimensions. These solids are common in engineering applications and the derived analytical solutions will be of value to scientists and engineers. We take a finite solid as an example of the application of the SF potential equations developed in this paper, and show the spatial variation of the solid–fluid potential energy in the neighbourhood of the edges of the solid, which is found to be remarkably different from the usual 1D potential energy equation commonly used in the adsorption literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asai, M., Ohba, T., Iwanaga, T., Kanoh, H., Endo, M., Campos-Delgado, J., Terrones, M., Nakai, K., Kaneko, K.: Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. J. Am. Chem. Soc. 133(38), 14880–14883 (2011)

    Article  CAS  Google Scholar 

  • Bojan, M.J., Steele, W.A.: Computer simulation of physisorption on a heterogeneous surface. Surf. Sci. 199(3), 395–402 (1988)

    Article  Google Scholar 

  • Chandrakumar, K., Srinivasu, K., Ghosh, S.K.: Nanoscale curvature-induced hydrogen adsorption in alkali metal doped carbon nanomaterials. J. Phys. Chem. C 112(40), 15670–15679 (2008)

    Article  CAS  Google Scholar 

  • Cong, S., Sugahara, T., Wei, T., Jiu, J., Hirose, Y., Nagao, S., Suganuma, K.: Diverse adsorption/desorption abilities originating from the nanostructural morphology of VOC gas sensing devices based on molybdenum trioxide nanorod arrays. Adv. Mater. Interfaces 3(14), 1600252 (2016)

    Article  Google Scholar 

  • Crowell, A., Steele, R.: Interaction potentials of simple nonpolar molecules with graphite. J. Chem. Phys. 34(4), 1347–1349 (1961)

    Article  CAS  Google Scholar 

  • Everett, D.H., Powl, J.C.: Adsorption in slit-like and cylindrical micropores in the henry’s law region. A model for the microporosity of carbons. J. Chem. Soc. Faraday Trans. 72, 619–636 (1976)

    Article  CAS  Google Scholar 

  • Goler, S., Coletti, C., Tozzini, V., Piazza, V., Mashoff, T., Beltram, F., Pellegrini, V., Heun, S.: Influence of graphene curvature on hydrogen adsorption: toward hydrogen storage devices. J. Phys. Chem. C 117(22), 11506–11513 (2013)

    Article  CAS  Google Scholar 

  • Gor, G.Y., Rasmussen, C.J., Neimark, A.V.: Capillary condensation hysteresis in overlapping spherical pores: a Monte Carlo simulation study. Langmuir 28(33), 12100–12107 (2012)

    Article  CAS  Google Scholar 

  • Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.: Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett. 7(3), 583–587 (2007)

    Article  CAS  Google Scholar 

  • Nguyen, P.T., Do, D., Nicholson, D.: On the cavitation and pore blocking in cylindrical pores with simple connectivity. J. Phys. Chem. B 115(42), 12160–12172 (2011)

    Article  CAS  Google Scholar 

  • Nika, D., Pokatilov, E., Askerov, A., Balandin, A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009)

    Article  Google Scholar 

  • Ohba, T.: Significant curvature effects of partially charged carbon nanotubes on electrolyte behavior investigated using Monte Carlo simulations. PCCP 18(21), 14543–14548 (2016)

    Article  CAS  Google Scholar 

  • Ohba, T., Kanoh, H.: Intensive edge effects of nanographenes in molecular adsorptions. J. Phys. Chem. Lett. 3(4), 511–516 (2012)

    Article  CAS  Google Scholar 

  • Radovic, L.R., Bockrath, B.: On the chemical nature of graphene edges: origin of stability and potential for magnetism in carbon materials. J. Am. Chem. Soc. 127(16), 5917–5927 (2005)

    Article  CAS  Google Scholar 

  • Rasmussen, C.J., Gor, G.Y., Neimark, A.V.: Monte Carlo simulation of cavitation in pores with nonwetting defects. Langmuir 28(10), 4702–4711 (2012)

    Article  CAS  Google Scholar 

  • Shen, A., Zou, Y., Wang, Q., Dryfe, R.A., Huang, X., Dou, S., Dai, L., Wang, S.: Oxygen reduction reaction in a droplet on graphite: direct evidence that the edge is more active than the basal plane. Angew. Chem. 126(40), 10980–10984 (2014)

    Article  Google Scholar 

  • Son, Y.-W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature 444(7117), 347–349 (2006)

    Article  CAS  Google Scholar 

  • Steele, W.A.: The physical interaction of gases with crystalline solids: I. Gas–solid energies and properties of isolated adsorbed atoms. Surf. Sci. 36(1), 317–352 (1973)

    Article  CAS  Google Scholar 

  • Steele, W.A.: The Interaction of Gases with Solid Surfaces. Pergamon, London (1974)

    Google Scholar 

  • Tjatjopoulos, G.J., Feke, D.L., Mann, J.A. Jr.: Molecule-micropore interaction potentials. J. Phys. Chem. 92(13), 4006–4007 (1988)

    Article  CAS  Google Scholar 

  • Villarreal, E., Li, G.G., Zhang, Q., Fu, X., Wang, H.: Nanoscale surface curvature effects on ligand–nanoparticle interactions: a plasmon-enhanced spectroscopic study of thiolated ligand adsorption, desorption, and exchange on gold nanoparticles. Nano Lett. 17(7), 4443–4452 (2017)

    Article  CAS  Google Scholar 

  • Von Goeler, F., Muthukumar, M.: Adsorption of polyelectrolytes onto curved surfaces. J. Chem. Phys. 100(10), 7796–7803 (1994)

    Article  Google Scholar 

  • Vrabec, J., Stoll, J., Hasse, H.: A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B. 105(48), 12126–12133 (2001)

    Article  CAS  Google Scholar 

  • Wongkoblap, A., Do, D.D., Nicholson, D.: Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black. PCCP 10(8), 1106–1113 (2008)

    Article  CAS  Google Scholar 

  • Wu, C.-M., Baltrusaitis, J., Gillan, E.G., Grassian, V.H.: Sulfur dioxide adsorption on ZnO nanoparticles and nanorods. J. Phys. Chem. C. 115(20), 10164–10172 (2011)

    Article  CAS  Google Scholar 

  • Young, D., Crowell, A.: Physical Adsorption of Gases. Butterworths, London (1962)

    Google Scholar 

  • Zeng, Y., Horio, K., Horikawa, T., Nakai, K., Do, D.D., Nicholson, D.: On the evolution of the heat spike in the isosteric heat versus loading for argon adsorption on graphite-A new molecular model for graphite and reconciliation between experiment and computer simulation. Carbon. 122, 622–634 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the Australian Research Council (DP16013540), and the scholarship from China Scholarship Council (CSC) for Lumeng Liu in spending his tenure at the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Do.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1936 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zeng, Y., Do, D.D. et al. Development of averaged solid–fluid potential energies for layers and solids of various geometries and dimensionality. Adsorption 24, 1–9 (2018). https://doi.org/10.1007/s10450-017-9921-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9921-2

Keywords

Navigation