Adsorption

, Volume 24, Issue 1, pp 43–51 | Cite as

Interaction of photosynthetic pigments with single-walled carbon nanotube (15, 15): a molecular dynamics study

Article
  • 42 Downloads

Abstract

In this study, adsorption of photosynthetic pigments on the inner and outer surfaces of single-walled carbon nanotube (15, 15) has been investigated using molecular dynamics simulation. The binding free energy is calculated by using the linear interaction energy algorithm, that its value indicates the adsorption of all pigments is desirable in both positions. Also, despite the high similarity between each category of these pigments, their interaction with the nanotube is different, that this result can be useful to separate these pigments from one another. According to Lennard–Jones potential energy between the pigments and carbon nanotube, the interaction on the inner surface is stronger than that on the outer surface for all pigments. The chlorophylls phytol tail interacts more strongly with the nanotube compared with the porphyrin ring of chlorophylls. The ability of carotenoids to institute π–π stacking is attributed to conjugated system. Furthermore, xanthophylls due to hydrogen bonded to oxygen atom form semi-hydrogen bonds with carbon nanotube.

Keywords

Photosynthetic pigments Carbon nanotubes Interaction Adsorption 

References

  1. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015)CrossRefGoogle Scholar
  2. Åqvist, J., Medina, C., Samuelsson, J.-E.: A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 7(3), 385–391 (1994)CrossRefGoogle Scholar
  3. Az’hari, S., Ghayeb, Y.: Effect of chirality, length and diameter of carbon nanotubes on the adsorption of 20 amino acids: a molecular dynamics simulation study. Mol. Simul. 40(5), 392–398 (2014)CrossRefGoogle Scholar
  4. Breneman, C.M., Wiberg, K.B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11(3), 361–373 (1990)CrossRefGoogle Scholar
  5. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)CrossRefGoogle Scholar
  6. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)CrossRefGoogle Scholar
  7. Che, J., Cagin, T., Goddard, W.A. III: Thermal conductivity of carbon nanotubes. Nanotechnology. 11(2), 65 (2000)CrossRefGoogle Scholar
  8. da Silva, A.W.S., Vranken, W.F.: ACPYPE-Antechamber python parser interface. BMC Res. Notes 5(1), 1 (2012)Google Scholar
  9. DeLano, W.L.: The PyMOL molecular graphics system. (2002)Google Scholar
  10. Ditchfield, R., Hehre, W.J., Pople J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules J. Chem. Phys. 54, 724–728 (1971)CrossRefGoogle Scholar
  11. Donhowe, E.G., Kong, F.: Beta-carotene: digestion, microencapsulation, and in vitro bioavailability. Food Bioprocess. Technol. 7(2), 338–354 (2014)CrossRefGoogle Scholar
  12. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24(16), 1999–2012 (2003)CrossRefGoogle Scholar
  13. Fischer, J.E., Johnson, A.T.: Electronic properties of carbon nanotubes. Curr. Opin. Solid State Mater. Sci. 4(1), 28–33 (1999)CrossRefGoogle Scholar
  14. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, revision D. 01. Gaussian Inc., Wallingford (2009)Google Scholar
  15. Garcia, G., Ciofini, I., Fernandez-Gomez, M., Adamo, C.: Confinement effects on UV–visible absorption spectra: β-carotene inside carbon nanotube as a test case. J Phys. Chem. Lett. 4(8), 1239–1243 (2013)CrossRefGoogle Scholar
  16. Ghasemi-Kooch, M., Dehestani, M., Housaindokht, M.R., Bozorgmehr, M.R.: Oleuropein interactions with inner and outer surface of different types of carbon nanotubes: Insights from molecular dynamic simulation. J. Mol. Liq. 241, 367–373 (2017)CrossRefGoogle Scholar
  17. Gupta, V.K., Kumar, R., Nayak, A., Saleh, T.A., Barakat, M.: Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Coll. Interface. Sci. 193, 24–34 (2013)CrossRefGoogle Scholar
  18. Jakubus, A., Paszkiewicz, M., Stepnowski, P.: Carbon nanotubes application in the extraction techniques of pesticides: a review. Crit. Rev. Anal. Chem. 47(1), 76–91 (2017)CrossRefGoogle Scholar
  19. Jung, C., Son, A., Her, N., Zoh, K.-D., Cho, J., Yoon, Y.: Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review. J. Ind. Eng. Chem. 27, 1–11 (2015)CrossRefGoogle Scholar
  20. Karki, K., Roccatano, D.: Molecular dynamics simulation study of chlorophyll a in different organic solvents. J. Chem. Theor. Comput. 7(4), 1131–1140 (2011)CrossRefGoogle Scholar
  21. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., Achiba, Y.: Optical properties of single-wall carbon nanotubes. Synth. Metals 103(1–3), 2555–2558 (1999)CrossRefGoogle Scholar
  22. Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.-P., Muller, S.: Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2(2), 108–113 (2007)CrossRefGoogle Scholar
  23. Krawczyk, T., Marian, K., Pawlyta, M.: Linear polymer separation using carbon-nanotube-modified centrifugal filter units. J. Sep. Sci. 39(4), 725–731 (2016)CrossRefGoogle Scholar
  24. Levitt, M., Perutz, M.F.: Aromatic rings act as hydrogen bond acceptors. J. Mol. Biol. 201(4), 751–754 (1988)CrossRefGoogle Scholar
  25. Matorin, D., Karateyeva, A., Osipov, V., Lukashev, E., Seifullina, N.K., Rubin, A.: Influence of carbon nanotubes on chlorophyll fluorescence parameters of green algae Chlamydomonas reinhardtii. Nanotechnol. Russ. 5(5–6), 320–327 (2010)CrossRefGoogle Scholar
  26. Nanotube Modeler: JCrystalSoft (2004–2005). http://www.jcrystal.com/products/wincnt/
  27. Shioi, Y., Brotosudarmo, T.H.P., Limantara, L.: Separation of photosynthetic pigments by high-performance liquid chromatography: comparison of column performance, mobile phase, and temperature. Proced. Chem. 14, 202–210 (2015)CrossRefGoogle Scholar
  28. Srivatsan, A., Pera, P., Joshi, P., Wang, Y., Missert, J.R., Tracy, E.C., Tabaczynski, W.A., Yao, R., Sajjad, M., Baumann, H.: Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a. Bioorg. Med. Chem. 23(13), 3603–3617 (2015)CrossRefGoogle Scholar
  29. Wang, W., Wang, J., Kollman, P.A.: What determines the van der waals coefficient β in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Proteins 34(3), 395–402 (1999)CrossRefGoogle Scholar
  30. Wesołowski, R.P., Furmaniak, S., Terzyk, A.P., Gauden, P.A.: Simulating the effect of carbon nanotube curvature on adsorption of polycyclic aromatic hydrocarbons. Adsorption. 17(1), 1–4 (2011)CrossRefGoogle Scholar
  31. Wong, B.S., Yoong, S.L., Jagusiak, A., Panczyk, T., Ho, H.K., Ang, W.H., Pastorin, G.: Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Del. Rev. 65(15), 1964–2015 (2013)CrossRefGoogle Scholar
  32. Xie, J., Xue, Q., Zheng, Q., Chen, H.: Investigation of the interactions between molecules of β-carotene, vitamin A and CNTs by MD simulations. Mater. Lett. 63(2), 319–321 (2009)CrossRefGoogle Scholar
  33. Xu, Z., Yang, X., Yang, Z.: A molecular simulation probing of structure and interaction for supramolecular sodium dodecyl sulfate/single-wall carbon nanotube assemblies. Nano Lett. 10(3), 985–991 (2010)CrossRefGoogle Scholar
  34. Yakobson, B.I., Avouris, P.: Mechanical properties of carbon nanotubes. In: Dresselhaus M.S., Dresselhaus G., Avouris P. (eds) Carbon Nanotubes, pp. 287–327. Springer, New York (2001)CrossRefGoogle Scholar
  35. Zhang, L., Silva, D.A., Yan, Y., Huang, X.: Force field development for cofactors in the photosystem II. J. Comput. Chem. 33(25), 1969–1980 (2012)CrossRefGoogle Scholar
  36. Zheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G.: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2(5), 338–342 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryShahid Bahonar University of KermanKermanIran

Personalised recommendations