Advertisement

Adsorption

, Volume 24, Issue 1, pp 73–80 | Cite as

Effect of pre-adsorbed water in hydrophobic polymeric resin on adsorption equilibrium and breakthrough of 1,2-dichloroethane

  • Lijuan Jia
  • Qiuyi Shi
  • Siyuan Xie
  • Chao Long
Article

Abstract

Hot steam regeneration of an adsorbed bed is widely used in practical processes, so it is crucial to understand the effect of residual water contained in the adsorbent on VOCs adsorption. In this work, the influence of pre-adsorbed water in hypercrosslinked resin (HY-1) on the adsorption of 1,2-dichloroethane (DCE) was studied under both isothermal and pseudo-adiabatic conditions. Under isothermal conditions, the initial water had a slightly negative influence on adsorption capacities, and a negative influence on the breakthrough capacity lower than 9.3%, decreasing with higher DCE concentrations. Moreover, the influence of initial water in HY-1 on temperature rise and breakthrough adsorption capacities in fixed beds was also investigated under pseudo-adiabatic conditions. On the dry resin, a significant temperature rise (about 50 °C) inside the bed was observed when 200 mg/L of DCE was adsorbed. Compared to the dry resin, the temperature rise in the bed could be controlled to under 5 °C; the breakthrough adsorption capacities of DCE on the wet resin increased by 12.4–37.6%.

Keywords

Volatile organic compounds (VOCs) Adsorption Water Dynamics Equilibrium 

Notes

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (Grant No. 51578281).

Supplementary material

10450_2017_9919_MOESM1_ESM.docx (762 kb)
Supplementary material 1 (DOCX 762 KB)

References

  1. Cloirec, P.L., Pré, P., Delage, F., Giraudet, S.: Visualization of the exothermal VOC adsorption in a fixed-bed activated carbon adsorber. Environ. Technol. 33(3), 285–290 (2012)CrossRefGoogle Scholar
  2. Cosnier, F., Celzard, A., Furdin, G., Bégin, D., Marêché, J.F.: Influence of water on the dynamic adsorption of chlorinated VOCs on active carbon: relative humidity of the gas phase versus pre-adsorbed water. Adsorpt. Sci. Technol. 24(3), 215–228 (2006)CrossRefGoogle Scholar
  3. Dawson, R., Cooper, A.I., Adams, D.J.: Nanoporous organic polymer networks. Prog. Polym. Sci. 37(4), 530–563 (2012)CrossRefGoogle Scholar
  4. Delage, F., Pré, P., Cloirec, P.L.: Effects of moisture on warming of activated carbon bed during VOC adsorption. J. Environ. Eng. 125(12), 1160–1167 (1999)CrossRefGoogle Scholar
  5. Delage, F., Pré, A.P., Cloirec, P.L.: Mass transfer and warming during adsorption of high concentrations of VOCs on an activated carbon bed: experimental and theoretical analysis. Environ. Sci. Technol. 34(22), 4816–4821 (2000)CrossRefGoogle Scholar
  6. Fontanals, N., Marcé, R.M., Borrull, F., Cormack, P.A.G.: Hypercrosslinked materials: preparation, characterisation and applications. Polym. Chem. 6(41), 7231–7244 (2015)CrossRefGoogle Scholar
  7. Furuya, E.G., Chang, H.T., Miura, Y., Noll, K.E.: A fundamental analysis of the isotherm for the adsorption of phenolic compounds on activated carbon. Sep. Purif. Technol. 11(2), 69–78 (1997)CrossRefGoogle Scholar
  8. Giakoumi, A., Maggos, T.H., Michopoulos, J., Helmis, C., Vasilakos, C.H.: PM2.5 and volatile organic compounds (VOCs) in ambient air: a focus on the effect of meteorology. Environ. Monit. Assess. 152(1–4), 83–95 (2009)CrossRefGoogle Scholar
  9. Giraudet, S., Pré, P., Tezel, H., Cloirec, P.L.: Estimation of adsorption energies using physical characteristics of activated carbons and VOCs’ molecular properties. Carbon 44(10), 1873–1883 (2006)CrossRefGoogle Scholar
  10. Giraudet, S., Linepre, P., Cloirec, P.L.: Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons. Environ. Sci. Technol. 43(4), 1173–1179 (2009)CrossRefGoogle Scholar
  11. Gu, J.J., Faqir, N.M., Bart, H.J.: Drying of an activated carbon column after steam regeneration. Chem. Eng. Technol. 22(10), 859–864 (1999)CrossRefGoogle Scholar
  12. Hanzawa, K.K.Y.: Lack of a predominant adsorption of water vapor on carbon mesopores. Langmuir 13(22), 5802–5804 (1997)CrossRefGoogle Scholar
  13. Himeno, S., Urano, K.: Determination and correlation of binary gas adsorption equilibria of VOCs. J. Environ. Eng. 132(3), 301–308 (2006)CrossRefGoogle Scholar
  14. Kaplan, D., Nir, I., Shmueli, L.: Effects of high relative humidity on the dynamic adsorption of dimethyl methylphosphonate (DMMP) on activated carbon. Carbon 44(15), 3247–3254 (2006)CrossRefGoogle Scholar
  15. Kim, J.H., Lee, S.J., Kim, M.B., Lee, J.J., Lee, C.H.: Sorption equilibrium and thermal regeneration of acetone and toluene vapors on an activated carbon. Ind. Eng. Chem. Res. 46(13), 4584–4594 (2007)CrossRefGoogle Scholar
  16. Lee, J.W., Choi, D.Y., Kwak, D.H., Jung, H.J.: Adsorption dynamics of water vapor on activated carbon. Adsorption 11, 437–441 (2005)CrossRefGoogle Scholar
  17. Linders, M.J.G., van den Broeke, L.J.P., Kapteijn, F., Moulijn, J.A.: Binary adsorption equilibrium of organics and water on activated carbon. AlChE J. 47(8), 1885–1892 (2001)CrossRefGoogle Scholar
  18. Long, C., Li, Y., Yu, W.H., Li, A.M.: Adsorption characteristics of water vapor on the hypercrosslinked polymeric adsorbent. Chem. Eng. J. 180, 106 – 112. (2012(a))Google Scholar
  19. Long, C., Li, Y., Yu, W.H., Li, A.M.: Removal of benzene and methyl ethyl ketone vapor: Comparison of hypercrosslinked polymeric adsorbent with activated carbon. J. Hazard. Mater. 203, 251 – 256 (2012(b))Google Scholar
  20. Marban, G., Fuertes, A.B.: Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths. Carbon 42(1), 71–81 (2004)CrossRefGoogle Scholar
  21. Morozov, G., Breus, V., Nekludov, S., Breus, I.: Sorption of volatile organic compounds and their mixtures on montmorillonite at different humidity. Coll. Surf. A 454, 159–171 (2014)CrossRefGoogle Scholar
  22. Pre, P., Delage, F., Cloirec, P.L.: A model to predict the adsorber thermal behavior during treatment of volatile organic compounds onto wet activated carbon. Environ. Sci. Technol. 36(21), 4681–4688 (2002)CrossRefGoogle Scholar
  23. Sager, U., Schmidt, F.: Binary adsorption of n-butane or toluene and water vapor. Chem. Eng. Technol. 33(7), 1203–1207 (2010)CrossRefGoogle Scholar
  24. Salvador, F., Martin-Sanchez, N., Sanchez-Hernandez, R., Sanchez-Montero, M.J., Izquierdo, C.: Regeneration of carbonaceous adsorbents. Part I: thermal regeneration. Micropor. Mesopor. Mat. 202, 259–276 (2015)CrossRefGoogle Scholar
  25. Shih, Y.H., Chou, S.M., Peng, Y.H., Shih, M.: Linear solvation energy relationships used to evaluate sorption mechanisms of volatile organic compounds with one organomontmorillonite under different humidities. J. Chem. Eng. Data 56(12), 4950–4955 (2011)CrossRefGoogle Scholar
  26. Tsimpidi, A.P., Trail, M., Hu, Y.T., Nenes, A., Russell, A.G.: Modeling an air pollution episode in northwestern United States: identifying the effect of nitrogen oxide and volatile organic compound emission changes on air pollutants formation using direct sensitivity analysis. J. Air Waste Manag. 62(10), 1150–1165 (2012)CrossRefGoogle Scholar
  27. Yoon, Y.H., Nelson, J.H.: Application of gas adsorption kinetics i: a theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 45(8), 509–516 (1984)CrossRefGoogle Scholar
  28. Zhou, L., Li, M., Sun, Y., Zhou, Y.P.: Effect of moisture in microporous activated carbon on the adsorption of methane. Carbon 39(5), 771–785 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of Applied ChemistryYuncheng UniversityYunchengPeople’s Republic of China

Personalised recommendations