, Volume 24, Issue 1, pp 95–104 | Cite as

Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products

  • R. Goerlitz
  • L. Weisleder
  • S. Wuttig
  • S. Trippel
  • K. Karstens
  • P. Goetz
  • H. Niebelschuetz


Due to the decreasing availability of fossil resources and the negative effects on the global climate, an alternative to the petrochemical industry for the production of chemicals and fuels has to be developed. Bio-butanol is one of the most promising substitutes for gasoline and platform chemicals. However, the economical production of butanol by fermentation is limited by several factors. Since butanol is toxic for the cells, only low concentrations can be achieved in the fermentation broth. A recovery of butanol by distillation consumes more energy than the purified product contains and therefore is uneconomic. As an alternative, the purification of butanol by adsorption is a promising energy efficient technique. In this work adsorption isotherms for the resin SP-207 and the activated carbons AC 207C and CAL TR were determined for butanol solutions and synthetic fermentation broths at pH 4 and 5. The specific loading for butanol in the synthetic fermentation broth with pH 4 was decreased up to 53% at a butanol concentration of 4 g L− 1 compared to the pure butanol–water solution. The reduction was mainly caused by a replacement of butanol by butyric and acetic acid. To prevent the replacement, a selective pre-separation of the acids by the anion exchange resin MP 62 WS was tested. The resin showed affinity for the acids only, no solvent adsorption was observed. A pH shift of the medium from 4 to 5 led to a strong increase of the butanol adsorption. Furthermore, a screening test for the thermal regeneration of the three adsorption materials showed a drop of the butanol loading after the first cycle for the activated carbons, but not for the resin and allowed a pre-selection for further desorption tests.


Butanol Adsorption ABE fermentation Acid separation Adsorbent regeneration 



This work is part of the OPTISOLV project, supported within the frame of the ERA-Net EuroTransBio-7 initiative by the German Federal Ministry of Education and Research under Reference Number 031A231A.


  1. Abdehagh, N., Tezel, F. H., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19, 1263–1272 (2013)CrossRefGoogle Scholar
  2. Abdehagh, N., Gurnani, P., Tezel, F. H., Thibault, J.: Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption. 21, 185–194 (2015)CrossRefGoogle Scholar
  3. Águeda, V. I., Delgado, J. A., Uguina, M. A., Sotelo, J. L., García, Á.: Column dynamics of an adsorption–drying–desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep. Purif. Technol. 104, 307–321 (2013)CrossRefGoogle Scholar
  4. Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes (mini review). Appl. Microbiol. Biotechnol. 77, 23–35 (2007)CrossRefGoogle Scholar
  5. Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J. Y.: Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10(6), 305–311 (2008)CrossRefGoogle Scholar
  6. Bowles, L. K., Ellefson, W. L.: Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50(5), 1165–1170 (1985)Google Scholar
  7. Dürre, P.: New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 49, 639–648 (1998)CrossRefGoogle Scholar
  8. Dürre, P.: Biobutanol: an attractive biofuel. Biotechnol. J. 2(12), 1525–1534 (2007)CrossRefGoogle Scholar
  9. Ezeji, ,T.C., Qureshi, N., Blaschek, H.P.: Butanol fermentation research: upstream and downstream manipulations. Chem. Rec. 4, 305–314 (2004)CrossRefGoogle Scholar
  10. Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Bioproduction of butanolfrom biomass: from genes to Bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)CrossRefGoogle Scholar
  11. Faisal, A., Zarebska, A., Saremi, P., Korelskiy, D., Ohlin, L., Rova, U., Hedlund, J., Grahn, M.: MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broth. Adsorption. 20, 465–470 (2014)CrossRefGoogle Scholar
  12. Friedl, A.: Lignocellulosic biorefinery. Environ. Eng. Manag. J. 11, 75–79 (2012)Google Scholar
  13. Friedl, A., Qureshi, N., Maddox, I. S.: Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol. Bioeng. 38, 518–527 (1991)CrossRefGoogle Scholar
  14. Groot, W.J., Luyben, K.C.A.M.: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25, 29–31 (1986)CrossRefGoogle Scholar
  15. Ingram, L., Aldrich, H., Borges, A., Causey, T., Martinez, A., Morales, F., et al.: Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Progr. 15, 855–866 (1999)CrossRefGoogle Scholar
  16. Kumar, M., Goyal, Y., Sarkar, A., Gayen ,K.: Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl. Energy. 93, 193–204 (2012)CrossRefGoogle Scholar
  17. Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., Jung, K. S.: : Fermentative butanol production by Clostridia. Biotechnol. and Bioeng. 101(2), 209–228 (2008)CrossRefGoogle Scholar
  18. Lin, Y.L., Blaschek, H.P.: Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45, 966 (1983)Google Scholar
  19. Lin, X., Wu, J., Jin, X., Fan, J., Li, R., Wen, Q., Qian, W., Liu, D., Chen, X., Chen, Y., Xie, J., Bai, J., Ying, H.: Selective separation of bio-butanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. Biotechnol. Prog. 28, 962–972 (2012)CrossRefGoogle Scholar
  20. Maddox, I. S.: The acetone-butanol-ethanol fermentation: recent progress intechnology. Biotechnol. Genet. Eng. Rev. 7 189, 189–220 (1989a)CrossRefGoogle Scholar
  21. Maddox, I.S.: The acetone-butanol-ethanol fermentation: recent progress in technology. Biotechnol. Genet. Eng. Rev. 7, 189–220 (1989b)CrossRefGoogle Scholar
  22. Meagher, M.M., Qureshi, N., Hutkins, R.: Silicalite membrane and method for the selective recovery and concentration of acetone and butanol frommodel ABE solutions and fermentation broth. US Patent. 5, 755,967 (1998)Google Scholar
  23. Milestone, N.B., Bibby, D.M.: Concentration of alcohols by adsorption on silicalite. J. Chem. Technol. Biotechnol. 31, 732–736 (1981)CrossRefGoogle Scholar
  24. Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102, 811–821 (2009)CrossRefGoogle Scholar
  25. Nielsen, L., Larsson, M., Holst, O., Mattiasson, B.: Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl. Microbiol. Biotechnol. 28, 335–339 (1988)CrossRefGoogle Scholar
  26. Petrik, T.: Combined acetone, butanol, ethanol and organic acid fermentation by a degenerated strain of Clostridium acetobutylicum and subsequent esterification. PhD Thesis, Michigan State University: (2011)Google Scholar
  27. Qureshi, N., Blaschek, H.P.: Evaluation of recent advances in butanol fermentation, upstream, and downstream processing. Bioprocess. Biosyst. Eng. 24, 219–226 (2001)CrossRefGoogle Scholar
  28. Qureshi, N., Meagher, M.M., Hutkins, R.W.: Recovery of butanol frommodel solutions and fermentation broth using a silicalite/siliconemembrane. J. Membr. Sci. 158, 115–125 (1999)CrossRefGoogle Scholar
  29. Qureshi, N., Hughes, S., Maddox, I. S., Cotta, M. A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess. Biosyst. Eng. 27, 215–222 (2005)CrossRefGoogle Scholar
  30. Wu, J., Zhuang, W., Ying, H., Jiao, P., Li, R., Wen, Q., Wang, L., Zhou, J., Yang, P.: Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol. Prog. 31, 124–134 (2015a)CrossRefGoogle Scholar
  31. Wu, J., Zhuang, W., Ying, H.: Acetone–butanol–ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol. Prog. 31, 124–135 (2015b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.ARGUS Umweltbiotechnologie GmbHBerlinGermany
  2. 2.Beuth University of Applied Sciences, Bioprocess EngineeringBerlinGermany

Personalised recommendations