Skip to main content

Advertisement

Log in

Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Due to the decreasing availability of fossil resources and the negative effects on the global climate, an alternative to the petrochemical industry for the production of chemicals and fuels has to be developed. Bio-butanol is one of the most promising substitutes for gasoline and platform chemicals. However, the economical production of butanol by fermentation is limited by several factors. Since butanol is toxic for the cells, only low concentrations can be achieved in the fermentation broth. A recovery of butanol by distillation consumes more energy than the purified product contains and therefore is uneconomic. As an alternative, the purification of butanol by adsorption is a promising energy efficient technique. In this work adsorption isotherms for the resin SP-207 and the activated carbons AC 207C and CAL TR were determined for butanol solutions and synthetic fermentation broths at pH 4 and 5. The specific loading for butanol in the synthetic fermentation broth with pH 4 was decreased up to 53% at a butanol concentration of 4 g L− 1 compared to the pure butanol–water solution. The reduction was mainly caused by a replacement of butanol by butyric and acetic acid. To prevent the replacement, a selective pre-separation of the acids by the anion exchange resin MP 62 WS was tested. The resin showed affinity for the acids only, no solvent adsorption was observed. A pH shift of the medium from 4 to 5 led to a strong increase of the butanol adsorption. Furthermore, a screening test for the thermal regeneration of the three adsorption materials showed a drop of the butanol loading after the first cycle for the activated carbons, but not for the resin and allowed a pre-selection for further desorption tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdehagh, N., Tezel, F. H., Thibault, J.: Adsorbent screening for biobutanol separation by adsorption: kinetics, isotherms and competitive effect of other compounds. Adsorption 19, 1263–1272 (2013)

    Article  CAS  Google Scholar 

  • Abdehagh, N., Gurnani, P., Tezel, F. H., Thibault, J.: Adsorptive separation and recovery of biobutanol from ABE model solutions. Adsorption. 21, 185–194 (2015)

    Article  CAS  Google Scholar 

  • Águeda, V. I., Delgado, J. A., Uguina, M. A., Sotelo, J. L., García, Á.: Column dynamics of an adsorption–drying–desorption process for butanol recovery from aqueous solutions with silicalite pellets. Sep. Purif. Technol. 104, 307–321 (2013)

    Article  Google Scholar 

  • Antoni, D., Zverlov, V.V., Schwarz, W.H.: Biofuels from microbes (mini review). Appl. Microbiol. Biotechnol. 77, 23–35 (2007)

    Article  CAS  Google Scholar 

  • Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., Chou, K. J. Y.: Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. 10(6), 305–311 (2008)

    Article  CAS  Google Scholar 

  • Bowles, L. K., Ellefson, W. L.: Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 50(5), 1165–1170 (1985)

    CAS  Google Scholar 

  • Dürre, P.: New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl. Microbiol. Biotechnol. 49, 639–648 (1998)

    Article  Google Scholar 

  • Dürre, P.: Biobutanol: an attractive biofuel. Biotechnol. J. 2(12), 1525–1534 (2007)

    Article  Google Scholar 

  • Ezeji, ,T.C., Qureshi, N., Blaschek, H.P.: Butanol fermentation research: upstream and downstream manipulations. Chem. Rec. 4, 305–314 (2004)

    Article  CAS  Google Scholar 

  • Ezeji, T.C., Qureshi, N., Blaschek, H.P.: Bioproduction of butanolfrom biomass: from genes to Bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)

    Article  CAS  Google Scholar 

  • Faisal, A., Zarebska, A., Saremi, P., Korelskiy, D., Ohlin, L., Rova, U., Hedlund, J., Grahn, M.: MFI zeolite as adsorbent for selective recovery of hydrocarbons from ABE fermentation broth. Adsorption. 20, 465–470 (2014)

    Article  CAS  Google Scholar 

  • Friedl, A.: Lignocellulosic biorefinery. Environ. Eng. Manag. J. 11, 75–79 (2012)

    CAS  Google Scholar 

  • Friedl, A., Qureshi, N., Maddox, I. S.: Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation. Biotechnol. Bioeng. 38, 518–527 (1991)

    Article  CAS  Google Scholar 

  • Groot, W.J., Luyben, K.C.A.M.: In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 25, 29–31 (1986)

    Article  CAS  Google Scholar 

  • Ingram, L., Aldrich, H., Borges, A., Causey, T., Martinez, A., Morales, F., et al.: Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Progr. 15, 855–866 (1999)

    Article  CAS  Google Scholar 

  • Kumar, M., Goyal, Y., Sarkar, A., Gayen ,K.: Comparative economic assessment of ABE fermentation based on cellulosic and non-cellulosic feedstocks. Appl. Energy. 93, 193–204 (2012)

    Article  CAS  Google Scholar 

  • Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J., Jung, K. S.: : Fermentative butanol production by Clostridia. Biotechnol. and Bioeng. 101(2), 209–228 (2008)

    Article  CAS  Google Scholar 

  • Lin, Y.L., Blaschek, H.P.: Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45, 966 (1983)

    CAS  Google Scholar 

  • Lin, X., Wu, J., Jin, X., Fan, J., Li, R., Wen, Q., Qian, W., Liu, D., Chen, X., Chen, Y., Xie, J., Bai, J., Ying, H.: Selective separation of bio-butanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. Biotechnol. Prog. 28, 962–972 (2012)

    Article  CAS  Google Scholar 

  • Maddox, I. S.: The acetone-butanol-ethanol fermentation: recent progress intechnology. Biotechnol. Genet. Eng. Rev. 7 189, 189–220 (1989a)

    Article  Google Scholar 

  • Maddox, I.S.: The acetone-butanol-ethanol fermentation: recent progress in technology. Biotechnol. Genet. Eng. Rev. 7, 189–220 (1989b)

    Article  CAS  Google Scholar 

  • Meagher, M.M., Qureshi, N., Hutkins, R.: Silicalite membrane and method for the selective recovery and concentration of acetone and butanol frommodel ABE solutions and fermentation broth. US Patent. 5, 755,967 (1998)

  • Milestone, N.B., Bibby, D.M.: Concentration of alcohols by adsorption on silicalite. J. Chem. Technol. Biotechnol. 31, 732–736 (1981)

    Article  CAS  Google Scholar 

  • Nielsen, D.R., Prather, K.J.: In situ product recovery of n-butanol using polymeric resins. Biotechnol. Bioeng. 102, 811–821 (2009)

    Article  CAS  Google Scholar 

  • Nielsen, L., Larsson, M., Holst, O., Mattiasson, B.: Adsorbents for extractive bioconversion applied to the acetone-butanol fermentation. Appl. Microbiol. Biotechnol. 28, 335–339 (1988)

    Article  CAS  Google Scholar 

  • Petrik, T.: Combined acetone, butanol, ethanol and organic acid fermentation by a degenerated strain of Clostridium acetobutylicum and subsequent esterification. PhD Thesis, Michigan State University: (2011)

  • Qureshi, N., Blaschek, H.P.: Evaluation of recent advances in butanol fermentation, upstream, and downstream processing. Bioprocess. Biosyst. Eng. 24, 219–226 (2001)

    Article  CAS  Google Scholar 

  • Qureshi, N., Meagher, M.M., Hutkins, R.W.: Recovery of butanol frommodel solutions and fermentation broth using a silicalite/siliconemembrane. J. Membr. Sci. 158, 115–125 (1999)

    Article  CAS  Google Scholar 

  • Qureshi, N., Hughes, S., Maddox, I. S., Cotta, M. A.: Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess. Biosyst. Eng. 27, 215–222 (2005)

    Article  CAS  Google Scholar 

  • Wu, J., Zhuang, W., Ying, H., Jiao, P., Li, R., Wen, Q., Wang, L., Zhou, J., Yang, P.: Acetone-butanol-ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol. Prog. 31, 124–134 (2015a)

    Article  CAS  Google Scholar 

  • Wu, J., Zhuang, W., Ying, H.: Acetone–butanol–ethanol competitive sorption simulation from single, binary, and ternary systems in a fixed-bed of KA-I resin. Biotechnol. Prog. 31, 124–135 (2015b)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the OPTISOLV project, supported within the frame of the ERA-Net EuroTransBio-7 initiative by the German Federal Ministry of Education and Research under Reference Number 031A231A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Goerlitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerlitz, R., Weisleder, L., Wuttig, S. et al. Bio-butanol downstream processing: regeneration of adsorbents and selective exclusion of fermentation by-products. Adsorption 24, 95–104 (2018). https://doi.org/10.1007/s10450-017-9918-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9918-x

Keywords

Navigation